

THE PREMIER CONFERENCE 8 EXHIBITION ON COMPUTER GRAPHICS 8 INTERACTIVE TECHNIQUES

Specular Polynomials

Zhimin Fan¹, Jie Guo¹, Yiming Wang¹, Tianyu Xiao¹, Hao Zhang² Chenxi Zhou¹, Zhenyu Chen¹, Pengpei Hong³, Yanwen Guo¹, Ling-Qi Yan⁴

¹ Nanjing University

³ University of Utah

² Southeast University

⁴ University of California, Santa Barbara

Why Polynomials? $p(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$ Root-solving with global convergence (QR/QZ, root isolation)

Why Polynomials?

Solve
$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = 0$$

 $p'(x) = a_1 + 2a_2 x + \dots + na_n x^{n-1}$

The roots of p' determines the monotonic pieces of pRecursion + bisection on each piece

Specular Polynomials A New Solver for Specular Paths

Specular path sampling

- Local sampling failed to reach a (near-)point emitter
- Specialized methods connect endpoints with specular vertices
- How to connect?

Specular constraints

- Specular chains satisfy the reflection/Snell's law
- Finding specular chains connecting two endpoints requires solving the equations
- k vertices
- 2k variables (parameterized via barycentric coordinates)
- 2k independent equations

Prior works

- Solve the constraint equation via Newton's method
 - with meticulously chosen seeds
- Suffers from **unbounded convergence**
 - extremely high variance (fireflies) or bias (energy loss)

Our contributions

• A polynomial formulation of specular constraints

- derived by combining vertex constraint polynomials and
- rational coordinate mappings between barycentric coordinates

• A specular path solver using hidden variable resultant method

- combined with direct or eigenvalue solvers
- which is deterministic and free from multivariate Newton iterations

Applications to glints and caustics rendering

• which achieves fast and noise-free rendering of specular light transport effects

Laws $\rightarrow MVP$

Reflection/Snell's laws

Multivariate Polynomials

Problem setup

$$u_{i} = (1 - u_{i} - v_{i}, u_{i}, v_{i})^{\top}$$

$$x_{i} = (1 - u_{i} - v_{i}) p_{i,0} + u_{i} p_{i,1} + v_{i} p_{i,2} = P_{i} u_{i}.$$

$$\hat{n}_{i} = \frac{n_{i}}{\|n_{i}\|}, \quad n_{i} = (1 - u_{i} - v_{i}) n_{i,0} + u_{i} n_{i,1} + v_{i} n_{i,2} = N_{i} u_{i}.$$

Symbol	Description
x_0, x_{k+1}	Position of non-specular separators
x_i	Position of specular vertices
P_i	Position matrix $(\boldsymbol{p}_{i,0}, \boldsymbol{p}_{i,1}, \boldsymbol{p}_{i,2})$
$e_{i,1}, e_{i,2}$	Vector of triangle edges
\boldsymbol{n}_i	Un-normalized linearly interpolated normal of x_i
\hat{n}_i	Normal vector of x_i
N_i	Normal matrix $(\boldsymbol{n}_{i,0}, \boldsymbol{n}_{i,1}, \boldsymbol{n}_{i,2})$
h_i	Generalized half-vector of x_i
$t_{i,1}, t_{i,2}$	Tangent vectors of x_i , computing from n_i and $e_{i,1/2}$
d_i	Position difference of vertices x_{i+1} and x_i
\hat{d}_i	Direction from x_i to x_{i+1}
\boldsymbol{u}_i	Barycentric coordinate of x_i

Coplanarity constraint

 $\widehat{\boldsymbol{d}}_{i-1}$

$$\hat{d}_{i} = \frac{d_{i}}{\|d_{i}\|}, \quad d_{i} = x_{i+1} - x_{i}$$

SymbolDescription x_0, x_{k+1} Position of non-specular separators x_i Position of specular vertices P_i Position matrix ($p_{i,0}, p_{i,1}, p_{i,2}$) $e_{i,1}, e_{i,2}$ Vector of triangle edges n_i Un-normalized linearly interpolated normal of x_i \hat{n}_i Normal vector of x_i N_i Normal matrix ($n_{i,0}, n_{i,1}, n_{i,2}$)

- h_i Generalized half-vector of x_i
- $t_{i,1}, t_{i,2}$ Tangent vectors of x_i , computing from n_i and $e_{i,1/2}$
- d_i Position difference of vertices x_{i+1} and x_i
- \hat{d}_i Direction from x_i to x_{i+1}
- u_i Barycentric coordinate of x_i

$$(\boldsymbol{d}_{i-1} \times \boldsymbol{d}_i) \cdot \boldsymbol{n}_i = 0.$$

$$(\boldsymbol{d}_{i-1} \times (\boldsymbol{x}_{i+1} - \boldsymbol{x}_{i-1})) \cdot \boldsymbol{n}_i = 0.$$

Angularity constraint

$$\hat{d}_{i-1} \xrightarrow{\mathbf{n}_i \quad \hat{d}_i}_{\mathbf{x}_i \quad \mathbf{x}_i} \hat{d}_i = \frac{d_i}{\|d_i\|}, \quad d_i = x_{i+1} - x_i$$

$$\eta_{i-1} \| \hat{d}_{i-1} \times n_i \| = \eta_i \| \hat{d}_i \times n_i \|.$$
$$\blacksquare$$
$$\eta_{i-1} \hat{d}_{i-1} \times n_i = \eta_i \hat{d}_i \times n_i$$

Square roots in denominators!

Symbol	Description
x_0, x_{k+1}	Position of non-specular separators
x_i	Position of specular vertices
P_i	Position matrix $(\mathbf{p}_{i,0}, \mathbf{p}_{i,1}, \mathbf{p}_{i,2})$
$e_{i,1}, e_{i,2}$	Vector of triangle edges
n_i	Un-normalized linearly interpolated normal of x_i
\hat{n}_i	Normal vector of x_i
N_i	Normal matrix $(\boldsymbol{n}_{i,0}, \boldsymbol{n}_{i,1}, \boldsymbol{n}_{i,2})$
h_i	Generalized half-vector of x_i
$t_{i,1}, t_{i,2}$	Tangent vectors of x_i , computing from n_i and $e_{i,1/2}$
d_i	Position difference of vertices x_{i+1} and x_i
\hat{d}_i	Direction from x_i to x_{i+1}
u_i	Barycentric coordinate of x_i

Angularity: square form

- Projecting onto an arbitrary basis **b**
- Multiplying the common denominator

$$\eta_{i-1}\hat{d}_{i-1} \times n_i = \eta_i\hat{d}_i \times n_i$$

Symbol	Description				
x_0, x_{k+1}	Position of non-specular separators				
x_i	Position of specular vertices				
P_i	Position matrix $(\mathbf{p}_{i,0}, \mathbf{p}_{i,1}, \mathbf{p}_{i,2})$				
$e_{i,1}, e_{i,2}$	Vector of triangle edges				
n_i	Un-normalized linearly interpolated normal of x_i				
\hat{n}_i	Normal vector of x_i				
N_i	Normal matrix $(\mathbf{n}_{i,0}, \mathbf{n}_{i,1}, \mathbf{n}_{i,2})$				
h_i	Generalized half-vector of x_i				
$t_{i,1}, t_{i,2}$	Tangent vectors of x_i , computing from n_i and $e_{i,1/2}$				
d_i	Position difference of vertices x_{i+1} and x_i				
\hat{d}_i	Direction from x_i to x_{i+1}				
u_i	Barycentric coordinate of x_i				

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} & a_{0} \\ & x_{1} \\ & a_{0} \\ & x_{0} \end{array} \end{array} \begin{array}{c} \begin{array}{c} & a_{1} \\ & a_{k} \\ & a_{k+1} \\ & a_{k} \\ & a_{k} \end{array} \begin{array}{c} \\ & n_{k,0} \\ & e_{k,2} \\ & a_{k} \\ & a_{k} \\ & a_{k,0} \end{array} \begin{array}{c} \\ & a_{k} \\ & a_{k,1} \\ & a_{k,1}$$

$$\eta_{i-1}^2 \boldsymbol{d}_i^2 \left((\boldsymbol{d}_{i-1} \times \boldsymbol{n}_i) \cdot \boldsymbol{b} \right)^2 = \eta_i^2 \boldsymbol{d}_{i-1}^2 \left((\boldsymbol{d}_i \times \boldsymbol{n}_i) \cdot \boldsymbol{b} \right)^2.$$

Angularity: product form

- Exploit the symmetry property
- Reflection only!

$$\hat{d}_{i-1} \cdot n_i = -\hat{d}_i \cdot n_i.$$
$$\hat{d}_i \cdot t_i = \hat{d}_{i-1} \cdot t_i.$$

Symbol	Description
x_0, x_{k+1}	Position of non-specular separators
x_i	Position of specular vertices
P_i	Position matrix $(\boldsymbol{p}_{i,0}, \boldsymbol{p}_{i,1}, \boldsymbol{p}_{i,2})$
$e_{i,1}, e_{i,2}$	Vector of triangle edges
n_i	Un-normalized linearly interpolated normal of x_i
\hat{n}_i	Normal vector of x_i
N_i	Normal matrix $(\boldsymbol{n}_{i,0}, \boldsymbol{n}_{i,1}, \boldsymbol{n}_{i,2})$
h_i	Generalized half-vector of x_i
$t_{i,1}, t_{i,2}$	Tangent vectors of x_i , computing from n_i and $e_{i,1}$
d_i	Position difference of vertices x_{i+1} and x_i
\hat{d}_i	Direction from x_i to x_{i+1}
\boldsymbol{u}_i	Barycentric coordinate of x_i

$$\mathbf{I}_{i-1} \cdot \mathbf{n}_i)(\mathbf{d}_i \cdot \mathbf{t}_i) + (\mathbf{d}_{i-1} \cdot \mathbf{t}_i)(\mathbf{d}_i \cdot \mathbf{n}_i) = 0.$$

 $\int_{x_0}^{a_0} d_0$

 x_k

Milestone: Multivariate Specular Polynomials

Constraints	Formulation I	Degree	Formulation II	Degree
	Equation	I/F	Equation	I/F
Coplanarity	Consecutive difference form $(d_{i-1} \times d_i) \cdot n_i = 0$	3/2	Endpoint difference form $(d_{i-1} \times (x_{i+1} - x_{i-1})) \cdot n_i = 0$	2/1
Angularity	Square form (for reflection/refraction) $\eta_{i-1}^2 d_i^2 \left((d_{i-1} \times n_i) \cdot b \right)^2 - \eta_i^2 d_{i-1}^2 \left((d_i \times n_i) \cdot b \right)^2 = 0$	6/4	Product form (for reflection) $(d_{i-1} \cdot n_i)(d_i \cdot t_i) + (d_{i-1} \cdot t_i)(d_i \cdot n_i) = 0$	4/2

- Directly solving these multivariate formulations with many variables is not recommended
- In mathematics, the most reliable solvers for polynomial systems are designed for two variables

$MVP \rightarrow BVP$

2k variables 2 variables

Variable reduction

- Represent \boldsymbol{u}_i with \boldsymbol{u}_1
- Why rational?
- To make the final equations polynomial

Symbol	Description
x_0, x_{k+1}	Position of non-specular separators
x_i	Position of specular vertices
P_i	Position matrix $(\boldsymbol{p}_{i,0}, \boldsymbol{p}_{i,1}, \boldsymbol{p}_{i,2})$
$e_{i,1}, e_{i,2}$	Vector of triangle edges
n_i	Un-normalized linearly interpolated normal of x_i
\hat{n}_i	Normal vector of x_i
N_i	Normal matrix $(\boldsymbol{n}_{i,0}, \boldsymbol{n}_{i,1}, \boldsymbol{n}_{i,2})$
h_i	Generalized half-vector of x_i
$t_{i,1}, t_{i,2}$	Tangent vectors of x_i , computing from n_i and $e_{i,1/2}$
d_i	Position difference of vertices x_{i+1} and x_i
\hat{d}_i	Direction from x_i to x_{i+1}
u_i	Barycentric coordinate of x_i

Symbol Description Position of non-specular separators x_0, x_{k+1} **Ray-triangle intersection** Position of specular vertices x_i P_i Position matrix ($\boldsymbol{p}_{i,0}, \boldsymbol{p}_{i,1}, \boldsymbol{p}_{i,2}$) Vector of triangle edges $e_{i,1}, e_{i,2}$ Un-normalized linearly interpolated normal of x_i n_i Normal vector of x_i \hat{n}_i Normal matrix $(n_{i,0}, n_{i,1}, n_{i,2})$ N_i $\frac{(\tilde{u}_{i+1}(\boldsymbol{u}_i,\boldsymbol{u}_{i-1}),\tilde{v}_{i+1}(\boldsymbol{u}_i,\boldsymbol{u}_{i-1}))^{\top}}{\kappa_{i+1}(\boldsymbol{u}_i,\boldsymbol{u}_{i-1})},$ Generalized half-vector of x_i h_i $u_{i+1}(u_i, u_{i-1}) =$ Tangent vectors of x_i , computing from n_i and $e_{i,1/2}$ $t_{i,1}, t_{i,2}$ d_i Position difference of vertices x_{i+1} and x_i \hat{d}_i Direction from x_i to x_{i+1} Barycentric coordinate of x_i u_i d_0 \boldsymbol{x}_1 x_{k+1} $n_{k,0}e_{\mu}$ $\tilde{u}_{i+1}(u_i, u_{i-1}) = (\tilde{d}_i \times e_{i+1,2}) \cdot (x_i - p_{i+1,0}),$ xo $\tilde{v}_{i+1}(u_i, u_{i-1}) = ((x_i - p_{i+1,0}) \times e_{i+1,1}) \cdot d_i,$ $\kappa_{i+1}(u_i, u_{i-1}) = (\tilde{d}_i \times e_{i+1,2}) \cdot e_{i+1,1}.$ Möller-Trumbore

Reflection

• Accurate

$$\hat{\boldsymbol{d}}_i = -2(\hat{\boldsymbol{d}}_{i-1}\cdot\hat{\boldsymbol{n}}_i)\hat{\boldsymbol{n}}_i + \hat{\boldsymbol{d}}_{i-1}$$

through multiplying \hat{d}_i by $n_i^2 \sqrt{d_{i-1}^2}$:

$$\tilde{\boldsymbol{d}}_i = -2(\boldsymbol{d}_{i-1} \cdot \boldsymbol{n}_i)\boldsymbol{n}_i + \boldsymbol{d}_{i-1}\boldsymbol{n}_i^2$$

Refraction

$$\hat{d}_{i} = \eta_{i}'(\hat{d}_{i-1} - (\hat{d}_{i-1} \cdot \hat{n}_{i})\hat{n}_{i}) - \sqrt{1 - \eta_{i}'^{2}(1 - (\hat{d}_{i-1} \cdot \hat{n}_{i})^{2})}\hat{n}_{i}$$
$$\tilde{d}_{i} = \eta_{i}'(d_{i-1}n_{i}^{2} - (d_{i-1} \cdot n_{i})n_{i}) - \sqrt{\beta_{i}}n_{i},$$
$$\beta_{i} = n_{i}^{2}d_{i-1}^{2} - \eta_{i}'^{2}\left(n_{i}^{2}d_{i-1}^{2} - (d_{i-1} \cdot n_{i})^{2}\right)$$

• Approximating \sqrt{x} in [0,1] with precision 10^{-3}

Refraction (cont'd)

• Approximating \sqrt{x} in [0,1]

$$\frac{c_{0,i} + c_{1,i}x}{d_{0,i} + d_{1,i}x}, \ i = 0, 1, 2..., 5.$$

Index	Left endpoint	Right endpoint	$c_{0,i}$	c _{1,i}	$d_{0,i}$	$d_{1,i}$	Max error
0	0.000	0.005	1.06939×10^{-1}	1.24883×10^2	6.44864	7.79412×10^2	0.0005
1	0.005	0.020	1.05021×10^{-1}	3.12337×10^{1}	3.20289	9.78683×10^{1}	0.0005
2	0.020	0.080	1.30984×10^{-1}	9.75997	2.00015	$1.52961 imes 10^{1}$	0.0009
3	0.080	0.200	3.76068×10^{-1}	8.89489	3.19627	8.11322	0.0005
4	0.200	0.500	4.56906×10^{-1}	4.32322	2.45619	2.49402	0.0007
5	0.500	1.000	9.38873×10^{-1}	4.10143	3.41291	1.62996	0.0006

Milestone 2: Bivariate Specular Polynomials

	Туре	Equation	#Var.	Degree
	R^k	Eqs. (6), (13)	2k	2, 4
Multivar.	T^k	Eqs. (6), (10)	2k	2, 6
	$(R T)^k$	Eq. (3)	3k + 1	2
	R	Eqs. (6), (13)	2	2, 4
	T	Eqs. (6), (10)	2	2, 6
Bivar.	RR	Eqs. (6), (13), (14)	2	10, 16
	RT, TR	Eqs. (6), (10), (14)	2	10, 24
	$\mid TT$	Eqs. (6), (13), (14)	2	18, 48

$BVP \rightarrow UVP$

2 variables 1 variable

Resultant

- The necessary condition of
 - the existence of common roots of
 - two (or more) polynomials
- Sylvester resultant
- Order: n + m

y is hidden: $a_0 = a_0(y), a_1 = a_1(y)$ $f(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_n$ $g(x) = b_0 x^m + b_1 x^{m-1} + \ldots + b_m$ $\cdots \cdots a_n$ 0 0 a_0 a_1 a_2 $\cdots \ \cdots \ a_{n-1} \quad a_n \quad \cdots$ 0 a_1 0 a_0 0 $\cdots \cdots a_{n-2} \quad a_{n-1}$ 0 0 a_0 : ••• $0 \quad a_0$ 0 0 • • • a_n b_1 b_2 \cdots \cdots b_m b_0 0 $b_1 \quad \cdots \quad \cdots \quad b_{m-1}$ b_0 b_m 0 . . .

Bézout resultant

• Order: *n*

$$r(v_1) = \det \boldsymbol{R}(v_1)$$

$$\begin{cases} a(u_1, v_1) = \sum_{i=0}^n a_i(v_1)u_1^i = 0, \\ b(u_1, v_1) = \sum_{i=0}^n b_i(v_1)u_1^i = 0. \end{cases}$$

$$\sum_{k=0}^{\min(i,n-1-j)} \left(a_{i-k}(v_1)b_{j+1+k}(v_1) - b_{i-k}(v_1)a_{j+1+k}(v_1) \right)$$

A running example

$$\begin{cases} a(u_1, v_1) = u_1^3 + v_1^3 + u_1 v_1 - 1 = 0, \\ b(u_1, v_1) = u_1^2 + v_1^2 - 2 = 0. \end{cases}$$
(1)

Its resultant matrix is

$$\boldsymbol{R}(v_1) = \begin{bmatrix} -v_1^3 + 2v_1 & v_1^3 - 1 & 2 - v_1^2 \\ v_1^3 - 1 & -v_1^2 + v_1 + 2 & 0 \\ 2 - v_1^2 & 0 & -1 \end{bmatrix}, \quad (2)$$

and the corresponding resultant is

$$r(v_1) = \det \mathbf{R}(v_1) = 2v_1^6 - 2v_1^5 - 5v_1^4 + 6v_1^3 + 10v_1^2 - 8v_1 - 7.$$
(3)

A running example (cont'd)

Milestone 3: Univariate Specular Polynomials

$UVP \rightarrow Roots$

Please refer to the paper

Equal-time comparison

Conclusion

2k variable $\rightarrow 1$ variable

- Reformulate the problem into univariate polynomial root-finding
- Good performance for single scattering

Future works (mostly for 2+ bounces)

- Reducing the degree of polynomials
- Numerical accuracy of solvers
- Reducing superfluous solutions
- Surface representations
- Accurate multiple refractions
- Glossy materials

Why polynomials? Global convergence Elimination to 1D

THANK YOU