
Specular Polynomials: The Supplemental Document
ANONYMOUS AUTHOR(S)
ACM Reference Format:
Anonymous Author(s). 2024. Specular Polynomials: The Supplemental Doc-
ument. ACM Trans. Graph. 43, 4, Article 1 (August 2024), 4 pages. https:
//doi.org/10.1145/3618360

1 IMPLEMENTATION
In this section, we describe our implementation details with pseudo-
codes, and we will release the source code upon acceptance.

1.1 Construction of bivariate specular polynomials
We present the pseudo-code for computing the coefficients of bi-
variate specular polynomials, taking R chain for example. Most of
the variables are bivariate polynomials or 3D vectors of them.

1 def bivar_poly_r(pD, pL, p10, p11, p12, n10, n11, n12:
BivarPoly3D): # The arguments are 3D vectors of
bivariate polynomials of degree 0

↩→

↩→

2 # Variables
3 u1 = BivarPoly([[0, 0], [1, 0]])
4 v1 = BivarPoly([[0, 1], [0, 0]])
5

6 # Specular vertex and normal
7 xD = pD
8 xL = pL
9 x1 = p10 * (1 - u1 - v1) + p11 * u1 + p12 * v1
10 n1 = n10 * (1 - u1 - v1) + n11 * u1 + n12 * v1
11

12 e11 = p11 - p10 # Edge
13

14 t11 = n1.cross(e11) # Tangent
15

16 # Position difference
17 d0 = x1 - xD
18 d1 = xL - x1
19 d0_dot_n1 = d0.dot(n1)
20 d1_dot_n1 = d1.dot(n1)
21 d0_dot_t11 = d0.dot(t11)
22 d1_dot_t11 = d1.dot(t11)
23

24 # Coplanarity constraints
25 s = xL - xD
26 cop = (d0.cross(s)).cross(n1.cross(s))
27 a = cop.bvp[0]
28

29 # Angularity constraints
30 b = d0_dot_n1 * d1_dot_t11 + d0_dot_t11 * d1_dot_n1
31

32 # The bivariate polynomial system in Eq. (23)
33 return a, b

Author’s address: Anonymous Author(s).

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3618360.

1.2 Construction of resultant matrices
In our implementation, we adopt a fast computationmethod [Chionh
et al. 2002] to construct the Bézout resultant matrix:

1 def bezout_resultant(a: BivarPoly, b: BivarPoly):
2 n = max(a.degree, b.degree)
3 r = Matrix(n)
4 for i in range(n):
5 for j in range(i, n):
6 r[i][j] = a[i]*b[j+1]-b[i]*a[j+1] # a[i] is a

univariate polynomial in v_1↩→

7 for i in range(1, n-1):
8 for j in range(i, n-1):
9 b[i][j] += b[i-1][j+1]
10 for i in range(n):
11 for j in range(i):
12 b[i][j] = b[j][i]
13 return r

Note that 𝑛 must be the actual degree. Using a degree larger than
its actual value will leads to a zero determinant for all 𝑣1.

1.3 Expansion of univariate polynomial determinants
For R and T chains, we expand the determinant of the univariate
matrix polynomial using Laplacian expansion. Special care of com-
putation order is required to minimize the number of multiplication
operations. For R, the order of determinant is 4, and we divide it
into computing 12 determinants of 2 × 2 matrices:

1 def det4(matrix: Matrix[UnivariatePolynomial]):
2 # Extract matrix elements
3 a, b, c, d = matrix[0], matrix[1], matrix[2], matrix[3]
4

5 # Calculate the determinant using the expansion by

minors formula↩→

6 temp=(a[0]*b[1] - a[1]*b[0]) * (c[2]*d[3] - c[3]*d[2])-\
7 (a[0]*b[2] - a[2]*b[0]) * (c[1]*d[3] - c[3]*d[1]) + \
8 (a[0]*b[3] - a[3]*b[0]) * (c[1]*d[2] - c[2]*d[1]) + \
9 (a[1]*b[2] - a[2]*b[1]) * (c[0]*d[3] - c[3]*d[0]) - \
10 (a[1]*b[3] - a[3]*b[1]) * (c[0]*d[2] - c[2]*d[0]) + \
11 (a[2]*b[3] - a[3]*b[2]) * (c[0]*d[1] - c[1]*d[0])
12

13 return temp

For T chain, the order is 6, and we compute 20 determinants of 3× 3
matrices. The implementation is analogous.

1.4 Univariate solver
Univariate polynomial solver. Recursively determining the mono-

tonic pieces of a univariate polynomial by its derivative can ef-
fectively determine the zeros of a polynomial, which serves as a
form of root isolation [Collins and Loos 1976]. The derivative of
a polynomial of degree 𝑑 is a polynomial of degree 𝑑 − 1. Within
a monotonic piece, the root finding is straightforward. We adopt

ACM Trans. Graph., Vol. 43, No. 4, Article 1. Publication date: August 2024.

https://doi.org/10.1145/3618360
https://doi.org/10.1145/3618360
https://doi.org/10.1145/3618360


1:2 • Anonymous Author(s)

RR RR

v

1

u1 u1

v1u1a

u1 v1b

v1u1a

u1 v1b

TT TT

v

1

v1u1a

v1u1a

u1 v1b u1 v1b

u1 u1

Fig. 1. Validation of the truncation.

the implementation of [Yuksel 2022], which has guaranteed global
convergence and high performance.

Piecewise bisection solver. The algorithm begins by uniformly par-
titioning the [0, 1] interval into 𝑚 pieces and evaluating the de-
terminant values at all endpoints. If the determinant signs at the
endpoints of a piece are different, we perform a bisection on that
segment. Here, we choose the bisection solver because it is free of
derivative computation of high-order determinants and can be mas-
sively parallelized. Additionally, when evaluating the determinant,
since the bisection solver only needs its sign, we do not need to
compute its value. Note that computing the determinant of a large
matrix can be slow and numerically unstable. We find it safe to
truncate the matrix stemming from the bivariate specular polyno-
mials to a small degree such that the maximum absolute value of
the coefficients of the truncated terms is less than 𝜖𝑀 , with𝑀 being
the maximum absolute value of the coefficients of all terms. We set
𝜖 to 10−9 in our implementation, which bounds the maximum error.
Two examples are shown in Fig. 1. As seen, the truncation makes
almost no difference to the contour of bivariate equations.

Eigenvalue solver. We empoly linearization [Golub and Van Loan
2012] to convert the univariate root-finding problem into a general-
ized eigenvalue problem. We use the RealQZ module in the Eigen
library [Guennebaud et al. 2010] to perform real QZ decompositions
of a pair of square matrices. We set the maximal number of eigen-
value decomposition iterations to 100. The resulting eigenvalues
corresponds to the solution 𝑣1.

u1 v1a

b

r

u1 v1

u1

v

1

v1

v

1

Fig. 2. Plot of the bivariate polynomial system in Eq. (1) and its resultant in
Eq. (3). The two intersections in the left diagram correspond exactly to the
two roots in the right diagram.

2 DISCUSSIONS ON RESULTANTS
A running example. Let’s take the following bivariate polynomial

system as an example:{
𝑎(𝑢1, 𝑣1) = 𝑢31 + 𝑣31 + 𝑢1𝑣1 − 1 = 0,

𝑏 (𝑢1, 𝑣1) = 𝑢21 + 𝑣21 − 2 = 0.
(1)

Its resultant matrix is

𝑹 (𝑣1) =

−𝑣31 + 2𝑣1 𝑣31 − 1 2 − 𝑣21
𝑣31 − 1 −𝑣21 + 𝑣1 + 2 0
2 − 𝑣21 0 −1

 , (2)

and the corresponding resultant is

𝑟 (𝑣1) = det 𝑹 (𝑣1) = 2𝑣61 − 2𝑣51 − 5𝑣41 + 6𝑣31 + 10𝑣21 − 8𝑣1 − 7. (3)

Now, we can sequentially solve 𝑣1 and𝑢1 according to Eq. (3) and Eq.
(1). We visualize the bivariate polynomial system and the resultant
in Fig. 2. As seen, each root of the bivariate polynomial system
corresponds to a zero of the resultant.

Necessary condition. We briefly note that 𝑟 (𝑣1) = 0 is only a
necessary condition of the original system to have a solution, i.e.,{

𝑎(𝑢1, 𝑣1) = 0,
𝑏 (𝑢1, 𝑣1) = 0,

⇒ 𝑟 (𝑣1) = 0. (4)

It is not sufficient, which means for a given 𝑣∗1 that satisfies 𝑟 (𝑣
∗
1) =

0, there may be no valid 𝑢1 such that 𝑎(𝑢1, 𝑣∗1) = 𝑏 (𝑢1, 𝑣∗1) = 0.
Fortunately, there are a finite number of solutions of 𝑟 (𝑣1) = 0, so
we can validate them one by one before finally reporting a solution.

Resultant forms. Various forms of resultants are available [Ka-
pur and Saxena 1995]. In the case of two bivariate polynomials
𝑎(𝑢1, 𝑣1) and 𝑏 (𝑢1, 𝑣1) with degrees 𝑛 and𝑚 (𝑛 ≥ 𝑚) respectively,
the Sylvester [Sylvester 1853] resultant is simple to compute, where
each element of the matrix only involves a specific coefficient of the
polynomials. However, the size of the matrix is 𝑛 +𝑚. On the other
hand, the Bézout resultant matrix is much more compact [Bézout
1779], with a size of only 𝑛. We opt for the Bézout resultant due to
its smaller size, which leads to a more efficient computation.

Resultant vs. manual elimination. Recall that Section 4.4 entails
a manual elimination process using the rational mapping between
coordinates. The decision to opt for this method over a direct ap-
plication of resultant elimination arised from considerations of the
degree. Upon each application of bivariate resultants to eliminate

ACM Trans. Graph., Vol. 43, No. 4, Article 1. Publication date: August 2024.



Specular Polynomials: The Supplemental Document • 1:3

Table 1. Coefficients and maximum error of rational functions

Index Left endpoint Right endpoint 𝑐0,𝑖 𝑐1,𝑖 𝑑0,𝑖 𝑑1,𝑖 Max error

0 0.000 0.005 1.06939 × 10−1 1.24883 × 102 6.44864 7.79412 × 102 0.0005
1 0.005 0.020 1.05021 × 10−1 3.12337 × 101 3.20289 9.78683 × 101 0.0005
2 0.020 0.080 1.30984 × 10−1 9.75997 2.00015 1.52961 × 101 0.0009
3 0.080 0.200 3.76068 × 10−1 8.89489 3.19627 8.11322 0.0005
4 0.200 0.500 4.56906 × 10−1 4.32322 2.45619 2.49402 0.0007
5 0.500 1.000 9.38873 × 10−1 4.10143 3.41291 1.62996 0.0006

x

x x

Fig. 3. Validation of our rational approximation to
√
𝑥 in the range of [0, 1].

The error is less than 10−3.

one variable, the resulting degree becomes nearly squared [Nakat-
sukasa et al. 2015]. Besides, employing multivariate resultants has
proven impractical due to issues of numerical instability [Noferini
and Townsend 2016]. This underscores the necessity for our manual
elimination.

Implementation. Several existing packages are available for com-
puting the zeros of bivariate polynomials using the Bézout resultant
matrix [Meurer et al. 2017; Townsend and Trefethen 2013]. How-
ever, their performance typically ranges in the order of hundreds of
milliseconds for each tuple of triangles, making them impractical for
rendering purposes. In contrast, our pipeline is extremely efficient,
requiring only several microseconds for two bounces and less than
one microsecond for a single bounce.

3 RATIONAL APPROXIMATION FOR SQUARE ROOTS
As discussed in Sec. 4.4, we employ an approximant for

√︁
𝛽𝑖 . Let 𝜇𝑖

be the upper bound1 of 𝒏2
𝑖
𝒅2
𝑖−1 and 𝑥 = 𝛽𝑖/𝜇𝑖 . Our objective is to

find a good approximant of
√
𝑥 for 𝑥 ∈ [0, 1]. Using a polynomial

approximant is inaccurate since the derivative of
√
𝑥 approaches in-

finity as 𝑥 tends to zero. Therefore, we employ a rational expression,
i.e., the fraction of two polynomials. We divide the interval [0, 1]
into 6 bins and use a fraction of two one-degree polynomials. We
optimize the interpolant’s coefficients in each bin using the least
square method. We weigh the samples such that the value at the left
and right sides of each endpoint is nearly the same. Consequently,
the maximum error on each interval is less than 10−3, as shown in
Fig. 3. The coefficients are shown in Table 1.

1Notice that 0 ≤ 𝛽𝑖 ≤ 𝒏2
𝑖𝒅

2
𝑖−1 . Therefore, the upper bound 𝜇𝑖 of 𝒏2

𝑖𝒅
2
𝑖−1 can be

obtained as we can compute an upper bound of 𝒅2
𝑖−1 using the vertex locations and

0 ≤ 𝒏2
𝑖 ≤ 1.

Newton (Path Cuts) Ours Difference

Fig. 4. The glint-only image of the relief scene featuring TT specular chains.

4 COMPLEXITY
For a given tuple of triangles, the time complexity of computing
bivariate polynomial coefficients, Bézout matrices, and piecewise
bisections is O(𝑛4), O(𝑛3), and O(𝐶𝑛3), respectively. Here,𝐶 is the
product of the number of intervals and bisection iterations, and 𝑛 is
the degree of the bivariate systems:

𝑛 =

{
4
∏𝑙−1

𝑖=1 𝑛𝑖 , for specular reflection on 𝒙𝑘
6
∏𝑙−1

𝑖=1 𝑛𝑖 , for specular refraction on 𝒙𝑘
(5)

with 𝑘 being the length of specular chains and the factor 𝑛𝑖 further
relies on the scattering type on 𝒙𝑖 :

𝑛𝑖 =

{
4, for specular reflection on 𝒙𝑖

8, for specular refraction on 𝒙𝑖
. (6)

Therefore, the time complexity for solving all chains given two
separators is O(𝑡 (𝑛4+𝐶𝑛3)). Here, 𝑡 is the number of triangle tuples,
which has an upper bound of 𝑚𝑘 with 𝑚 being the number of
triangles in the scene, but it is much lower in practice thanks to the
efficient pruning techniques [Walter et al. 2009; Wang et al. 2020].
The space complexity is O(𝑛3 + 𝐶), which does not scale as the
number of triangles grows. Additionally, for the eigenvalue-based
solver, the time complexity will become O(𝑡𝐶𝑛6), with 𝐶 being the
number of QZ iterations. The space complexity is O(𝑛4).

REFERENCES
Étienne Bézout. 1779. Théorie Générale des Équations Algébriques. Ph. D. Dissertation.

Pierres, Paris.
Eng-Wee Chionh, Ming Zhang, and Ronald N. Goldman. 2002. Fast Computation of the

Bezout and Dixon Resultant Matrices. Journal of Symbolic Computation 33, 1 (Jan.
2002), 13–29. https://doi.org/10.1006/jsco.2001.0462

George E. Collins and Rüdiger Loos. 1976. Polynomial real root isolation by differentia-
tion. In Proceedings of the Third ACM Symposium on Symbolic and Algebraic Compu-
tation (YorktownHeights, New York, USA) (SYMSAC ’76). Association for Computing
Machinery, New York, NY, USA, 15–25. https://doi.org/10.1145/800205.806319

ACM Trans. Graph., Vol. 43, No. 4, Article 1. Publication date: August 2024.

https://doi.org/10.1006/jsco.2001.0462
https://doi.org/10.1145/800205.806319


1:4 • Anonymous Author(s)

Gene H. Golub and Charles F. Van Loan. 2012. Matrix Computations (4th ed.). Johns
Hopkins University Press.

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
Deepak Kapur and Tushar Saxena. 1995. Comparison of Various Multivariate Resultant

Formulations. In Proceedings of the 1995 International Symposium on Symbolic and
Algebraic Computation (ISSAC ’95). Association for Computing Machinery, New
York, NY, USA, 187–194. https://doi.org/10.1145/220346.220370

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B. Kir-
pichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh,
Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P.Muller, Francesco Bonazzi,
Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry,
Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal,
Robert Cimrman, and Anthony Scopatz. 2017. SymPy: symbolic computing in
Python. PeerJ Computer Science 3 (Jan. 2017), e103. https://doi.org/10.7717/peerj-
cs.103

Yuji Nakatsukasa, Vanni Noferini, and Alex Townsend. 2015. Computing the Common
Zeros of Two Bivariate Functions via Bézout Resultants. Numer. Math. 129, 1 (Jan.
2015), 181–209. https://doi.org/10.1007/s00211-014-0635-z

Vanni Noferini and Alex Townsend. 2016. Numerical Instability of Resultant Methods
for Multidimensional Rootfinding. SIAM J. Numer. Anal. 54, 2 (Jan. 2016), 719–743.
https://doi.org/10.1137/15M1022513

James Joseph Sylvester. 1853. On a Theory of the Syzygetic Relations of Two Rational
Integral Functions, Comprising an Application to the Theory of Sturm’s Functions,
and That of the Greatest Algebraical Common Measure. Philosophical Transactions
of the Royal Society of London 143 (1853), 407–548. https://doi.org/10.1098/rstl.1853.
0018

Alex Townsend and Lloyd N. Trefethen. 2013. An Extension of Chebfun to Two
Dimensions. SIAM J. Sci. Comput. 35, 6 (jan 2013), C495–C518. https://doi.org/10.
1137/130908002

BruceWalter, Shuang Zhao, Nicolas Holzschuch, and Kavita Bala. 2009. Single Scattering
in Refractive Media with Triangle Mesh Boundaries. ACM Trans. Graph. 28, 3, Article
92 (jul 2009), 8 pages. https://doi.org/10.1145/1531326.1531398

Beibei Wang, Miloš Hašan, and Ling-Qi Yan. 2020. Path Cuts: Efficient Rendering of
Pure Specular Light Transport. ACM Trans. Graph. 39, 6, Article 238 (nov 2020),
12 pages. https://doi.org/10.1145/3414685.3417792

CemYuksel. 2022. High-Performance Polynomial Root Finding for Graphics. Proceedings
of the ACM on Computer Graphics and Interactive Techniques 5, 3 (July 2022), 1–15.
https://doi.org/10.1145/3543865

ACM Trans. Graph., Vol. 43, No. 4, Article 1. Publication date: August 2024.

https://doi.org/10.1145/220346.220370
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1007/s00211-014-0635-z
https://doi.org/10.1137/15M1022513
https://doi.org/10.1098/rstl.1853.0018
https://doi.org/10.1098/rstl.1853.0018
https://doi.org/10.1137/130908002
https://doi.org/10.1137/130908002
https://doi.org/10.1145/1531326.1531398
https://doi.org/10.1145/3414685.3417792
https://doi.org/10.1145/3543865

	1 Implementation
	1.1 Construction of bivariate specular polynomials
	1.2 Construction of resultant matrices
	1.3 Expansion of univariate polynomial determinants
	1.4 Univariate solver

	2 Discussions on resultants
	3 Rational approximation for square roots
	4 Complexity
	References

