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1 IMPLEMENTATION

In this section, we describe our implementation details with pseudo-
codes, and we will release the source code upon acceptance.

1.1

We present the pseudo-code for computing the coefficients of bi-
variate specular polynomials, taking R chain for example. Most of
the variables are bivariate polynomials or 3D vectors of them.

Construction of bivariate specular polynomials

def bivar_poly_r(pD, pL, p1@, p11, p12, n10@, n11, n12:
< BivarPoly3D):

—

ul = BivarPoly([[0, 0], [1, 011)

vl = BivarPoly([[0, 1], [0, 0]11)

xD = pD

xL = pL

x1 =pl10 * (1 - ul - v1) + pll * ul + pl2 * vi
nl =n10 * (1 = ul = vl) + n11 * ul + n12 * vi
ell = p11 - pl1o@

t11 = nl.cross(ell)

do = x1 - xD

dl = xL - x1

do_dot_n1 = do.dot(n1)

dl_dot_n1 = d1.dot(n1)

do_dot_t11 = do@.dot(t11)

di_dot_t11 = d1.dot(t11)

s = xL - xD

cop = (d@.cross(s)).cross(nl.cross(s))

a = cop.bvp[0]

b = do_dot_n1 * di_dot_t11 + d@_dot_t11 * di_dot_n1

return a, b
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1.2 Construction of resultant matrices

In our implementation, we adopt a fast computation method [Chionh
et al. 2002] to construct the Bézout resultant matrix:

def bezout_resultant(a: BivarPoly, b: BivarPoly):
n = (a.degree, b.degree)
r = Matrix(n)

for i in (n):
for j in (i, n):
rfilCj] = alil*b[j+1]1-b[il*alj+1]
for i in 1, n-1):
for j in (i, n-1):
b[il[j] += bLi-11[j+1]
for i in (n):
for j in (i):
b[i1[j] = bL[jI[i]
return r

Note that n must be the actual degree. Using a degree larger than
its actual value will leads to a zero determinant for all v;.

1.3 Expansion of univariate polynomial determinants

For R and T chains, we expand the determinant of the univariate
matrix polynomial using Laplacian expansion. Special care of com-
putation order is required to minimize the number of multiplication
operations. For R, the order of determinant is 4, and we divide it
into computing 12 determinants of 2 X 2 matrices:

def detd4(matrix: Matrix[UnivariatePolynomiall):

a, b, ¢, d = matrix[0], matrix[1], matrix[2], matrix[3]

temp=(al0]*b[1] - al11*b[0]) * (c[2]*d[3] - c[3]1*d[2])-\
(al01xb[2] - al[2]1%b[01) * (c[11*d[3] - c[31*d[11) + \
(al0d*b[3] - al31*b[01) * (c[11*d[2] - c[2]*d[1]) + \
(al11*b[2] - al2]*b[11) * (c[@]*d[3] - c[3]*d[0]) - \
(al11*b[3] - al31*b[11) * (c[0I*d[2] - c[2]*d[0]) + \
(al2]#%b[3] - al3]*b[2]) * (c[0]*d[1] - c[1]1*d[0])

return temp

For T chain, the order is 6, and we compute 20 determinants of 3 X 3
matrices. The implementation is analogous.

1.4 Univariate solver

Univariate polynomial solver. Recursively determining the mono-
tonic pieces of a univariate polynomial by its derivative can ef-
fectively determine the zeros of a polynomial, which serves as a
form of root isolation [Collins and Loos 1976]. The derivative of
a polynomial of degree d is a polynomial of degree d — 1. Within
a monotonic piece, the root finding is straightforward. We adopt
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Fig. 1. Validation of the truncation.

the implementation of [Yuksel 2022], which has guaranteed global
convergence and high performance.

Piecewise bisection solver. The algorithm begins by uniformly par-
titioning the [0, 1] interval into m pieces and evaluating the de-
terminant values at all endpoints. If the determinant signs at the
endpoints of a piece are different, we perform a bisection on that
segment. Here, we choose the bisection solver because it is free of
derivative computation of high-order determinants and can be mas-
sively parallelized. Additionally, when evaluating the determinant,
since the bisection solver only needs its sign, we do not need to
compute its value. Note that computing the determinant of a large
matrix can be slow and numerically unstable. We find it safe to
truncate the matrix stemming from the bivariate specular polyno-
mials to a small degree such that the maximum absolute value of
the coefficients of the truncated terms is less than eM, with M being
the maximum absolute value of the coefficients of all terms. We set
€ to 1077 in our implementation, which bounds the maximum error.
Two examples are shown in Fig. 1. As seen, the truncation makes
almost no difference to the contour of bivariate equations.

Eigenvalue solver. We empoly linearization [Golub and Van Loan
2012] to convert the univariate root-finding problem into a general-
ized eigenvalue problem. We use the RealQZ module in the Eigen
library [Guennebaud et al. 2010] to perform real QZ decompositions
of a pair of square matrices. We set the maximal number of eigen-
value decomposition iterations to 100. The resulting eigenvalues
corresponds to the solution v;.
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Fig. 2. Plot of the bivariate polynomial system in Eq. (1) and its resultant in
Eq. (3). The two intersections in the left diagram correspond exactly to the
two roots in the right diagram.

2 DISCUSSIONS ON RESULTANTS

A running example. Let’s take the following bivariate polynomial
system as an example:

a(uy,vy) = u? +vf +ujo; —1=0,
5 o (1)
b(ui,v1) =uy +0y —2=0.
Its resultant matrix is
—vi+201 vi’—l 2—0%
Riv)=| 0;-1 —v’+01+2 0 |, )
2 —0? 0 -1

1
and the corresponding resultant is

r(v1) = detR(vy) = 20? - 20? - 5041} + 60? + 100% -8 —-7. (3)

Now, we can sequentially solve v; and u; according to Eq. (3) and Eq.
(1). We visualize the bivariate polynomial system and the resultant
in Fig. 2. As seen, each root of the bivariate polynomial system
corresponds to a zero of the resultant.

Necessary condition. We briefly note that r(v1) = 0 is only a
necessary condition of the original system to have a solution, i.e.,

{a(ul,vl) =0,

b(ug, 1) = 0, = r(v1) =0. 4)

It is not sufficient, which means for a given o] that satisfies r(v]) =
0, there may be no valid u; such that a(u1,07) = b(u1,0]) = 0.
Fortunately, there are a finite number of solutions of r(v1) = 0, so
we can validate them one by one before finally reporting a solution.

Resultant forms. Various forms of resultants are available [Ka-
pur and Saxena 1995]. In the case of two bivariate polynomials
a(uy,01) and b(uy,v1) with degrees n and m (n > m) respectively,
the Sylvester [Sylvester 1853] resultant is simple to compute, where
each element of the matrix only involves a specific coefficient of the
polynomials. However, the size of the matrix is n + m. On the other
hand, the Bézout resultant matrix is much more compact [Bézout
1779], with a size of only n. We opt for the Bézout resultant due to
its smaller size, which leads to a more efficient computation.

Resultant vs. manual elimination. Recall that Section 4.4 entails
a manual elimination process using the rational mapping between
coordinates. The decision to opt for this method over a direct ap-
plication of resultant elimination arised from considerations of the
degree. Upon each application of bivariate resultants to eliminate
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Table 1. Coefficients and maximum error of rational functions

Index | Left endpoint Right endpoint | co; c1i do,i di,i Max error
0 0.000 0.005 1.06939 X 1071 1.24883 x 10%  6.44864 7.79412 X 10° 0.0005
1 0.005 0.020 1.05021 x 1071 3.12337 x 101 3.20289  9.78683 X 10! 0.0005
2 0.020 0.080 1.30984 x 101 9.75997 2.00015 1.52961 x 10! 0.0009
3 0.080 0.200 3.76068 X 10™1  8.89489 3.19627 8.11322 0.0005
4 0.200 0.500 4.56906 x 1071 4.32322 2.45619  2.49402 0.0007
5 0.500 1.000 9.38873 x 10~ 4.10143 3.41291 1.62996 0.0006
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Fig. 3. Validation of our rational approximation to v/x in the range of [0,1].
The error is less than 1073

one variable, the resulting degree becomes nearly squared [Nakat-
sukasa et al. 2015]. Besides, employing multivariate resultants has
proven impractical due to issues of numerical instability [Noferini
and Townsend 2016]. This underscores the necessity for our manual
elimination.

Implementation. Several existing packages are available for com-
puting the zeros of bivariate polynomials using the Bézout resultant
matrix [Meurer et al. 2017; Townsend and Trefethen 2013]. How-
ever, their performance typically ranges in the order of hundreds of
milliseconds for each tuple of triangles, making them impractical for
rendering purposes. In contrast, our pipeline is extremely efficient,
requiring only several microseconds for two bounces and less than
one microsecond for a single bounce.

3 RATIONAL APPROXIMATION FOR SQUARE ROOTS

As discussed in Sec. 4.4, we employ an approximant for \/E .Let y;
be the upper bound! of n?diz_1 and x = f;/p;. Our objective is to
find a good approximant of /x for x € [0, 1]. Using a polynomial
approximant is inaccurate since the derivative of v/x approaches in-
finity as x tends to zero. Therefore, we employ a rational expression,
i.e., the fraction of two polynomials. We divide the interval [0, 1]
into 6 bins and use a fraction of two one-degree polynomials. We
optimize the interpolant’s coefficients in each bin using the least
square method. We weigh the samples such that the value at the left
and right sides of each endpoint is nearly the same. Consequently,
the maximum error on each interval is less than 1073, as shown in
Fig. 3. The coefficients are shown in Table 1.

INotice that 0 < 2 g2 2
Notice that 0 < B; < njd;_,. i

obtained as we can compute an upper bound of 11?71 using the vertex locations and
0<nis<l

Therefore, the upper bound p; of n%d _; can be

Fig. 4. The glint-only image of the relief scene featuring TT specular chains.

4 COMPLEXITY

For a given tuple of triangles, the time complexity of computing
bivariate polynomial coefficients, Bézout matrices, and piecewise
bisections is O(n*), O(n®), and O(Cn?), respectively. Here, C is the
product of the number of intervals and bisection iterations, and n is
the degree of the bivariate systems:

-1
n= {4 Hi:l ni,

for specular reflection on x )

6 T12) i,
with k being the length of specular chains and the factor n; further
relies on the scattering type on x;:

4,
n; =
i 8,

Therefore, the time complexity for solving all chains given two
separators is O(t(n*+Cn3)). Here, t is the number of triangle tuples,
which has an upper bound of mk with m being the number of
triangles in the scene, but it is much lower in practice thanks to the
efficient pruning techniques [Walter et al. 2009; Wang et al. 2020].
The space complexity is O(n® + C), which does not scale as the
number of triangles grows. Additionally, for the eigenvalue-based
solver, the time complexity will become O (tCn®), with C being the
number of QZ iterations. The space complexity is O(n?).

for specular refraction on xj

for specular reflection on x; ©

for specular refraction on x;
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