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Fig. 1. Rendering an aquarium scene (24 spp) featuring complex indirect illumination using Practical Path Guiding [Müller et al. 2017]. The samples produced
during each iteration are merged into the final image through inverse-variance-weighted combination [Müller 2019] and our proposed path-level multiple
importance reweighting, respectively. The variance maps show clear improvements in variance reduction of our method compared to the baseline.

Contemporary path guiding employs an iterative training scheme to fit
radiance distributions. However, existing methods combine the estimates
generated in each iteration merely within image space, overlooking differ-
ences in the convergence of distribution fitting over individual light paths.

This paper formulates the estimation combination task as a path reweight-
ing process. To compute spatio-directional varying combination weights,
we propose multiple importance reweighting, leveraging the importance
distributions from multiple guiding iterations. We demonstrate that our
proposed path-level reweighting makes guiding algorithms less sensitive
to noise and overfitting in distributions. This facilitates a finer subdivision
of samples both spatially and temporally (i.e., over iterations), which leads
to additional improvements in the accuracy of distributions and samples.

Inspired by adaptivemultiple importance sampling (AMIS), we introduce
a simple yet effective mixture-based weighting scheme with theoretically
guaranteed consistency, demonstrating good practical performance com-
pared to alternative weighting schemes. To further foster usage with high
sample rates, we introduce a hyperparameter that controls the size of
sample storage. When this size limit is exceeded, low-valued samples
are splatted during rendering and reweighted using a partial mixture of
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distributions. We found limiting the storage size reduces memory overhead
and keeps variance reduction and bias comparable to the unlimited ones.

Our method is largely agnostic to the underlying guiding method and
compatible with conventional pixel reweighting techniques. Extensive
evaluations underscore the feasibility of our approach in various scenes,
achieving variance reduction with negligible bias over state-of-the-art
solutions within equal sample rates and rendering time.
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1 INTRODUCTION
Monte Carlo path tracing [Fascione et al. 2018; Keller et al. 2015]
solves the rendering equation [Kajiya 1986] via stochastic sampling,
which is notoriously time-consuming and prone to noise when
applied to complex scenes. To accelerate convergence, path guiding
[Herholz et al. 2016, 2019; Huang et al. 2024; Müller et al. 2019;
Rath et al. 2020; Reibold et al. 2018; Ruppert et al. 2020; Schüßler
et al. 2022] employs an iterative training process, progressively
refining the proposal distribution by leveraging information from
historical samples, which could yield substantial noise reduction.
Consequently, guided path tracers robustly handle a wide variety
of light transport effects [Fan et al. 2023, 2024; Rath et al. 2023], play
a pivotal role in film production [Vorba et al. 2019], and extend their
impact even to real-time applications [Derevyannykh 2022].

In early guiding algorithms, the estimates generated during
training were either discarded [Ruppert et al. 2020; Vorba et al.
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2014] or assigned per-iteration constant weights when producing
the final rendering results [Reibold et al. 2018]. The optimal per-
pixel weights are proportional to the reciprocal pixel variance.
Since population variance is not accessible, sample variance is
alternatively used to compute these weights and often averaged
over the whole image to reduce bias [Müller 2019]. However,
given the adaptive nature of proposal distributions, the change of
variance across iterations varies across path space, as showcased in
Fig. 2, which suggests that the optimal weight should also fluctuate
for different paths. Even within a pixel exhibiting high variance,
certain regions of its support in path space may still be sufficiently
sampled, leading to a well-estimated integral within that specific
region.
This paper presents a new framework for combining all samples

generated during training and rendering through a path-level
reweighting procedure. We introducemultiple importance reweight-
ing, which computes the weight for each sample as if they were
drawn from various techniques in multiple importance sampling
(MIS) [Grittmann et al. 2022; Kondapaneni et al. 2019; Veach and
Guibas 1995b]. These weights are designed to capture the relative
efficacy of each iteration for a particular path, leveraging guiding
distributions and auxiliary information such as sample rates and
overall variance [Grittmann et al. 2019].

Unlike multiple importance sampling where techniques are
usually conceptually distinct [Grittmann et al. 2021; Kondapaneni
et al. 2019; Veach and Guibas 1995b; West et al. 2020], guiding dis-
tributions all fit the same target distribution. However, these fitted
distributions often suffer from noise and may fail to capture some
patterns of targets in certain iterations. Our proposed reweighting
scheme effectively serves as mixing several noisy distributions
into a more robust one when computing importance weights, as if
they were drawn from the mixture distribution. This could result
in more stable importance weights, making guiding algorithms
less susceptible to overfitting in certain iterations. Consequently,
a finer spatio-directional subdivision and sample allocation can
be safely employed even without incremental learning methods
[Ruppert et al. 2020]. Additionally, we introduce a simple yet
effective mixture-based weighting approach inspired by adaptive
multiple importance sampling (AMIS) [Cornuet et al. 2009; El-
Laham et al. 2019; Marin et al. 2019; Tokuyoshi et al. 2010] that
combines samples from adaptive importance samplers [Cappé et al.
2008; Elvira andMartino 2021], which enjoys guaranteed consistent
convergence. Our evaluation indicates that the proposed path-
level reweighting could lead to variance reduction with minimal
computational overhead, especially for short renderings. The main
drawback of our method is that it requires storing path samples and
historical distributions. To alleviate this issue, we further explore
how to reduce thememory overhead using constant sample storage
controlled by user parameters, whose performance is identical to
storing all samples in our tests. This soundly extends the range
of scenarios that path guiding can robustly handle. Nevertheless,
due to the computational overhead, we found the benefit is visible
primarily for low sample rates.
In summary, our contribution includes:
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Fig. 2. Variance changes across iterations differ across different regions
due to the evolution of distributions. We show variance averaged
over 6 independent runs and the standard derivation of variance. The
bottom example presents variance from the red and the green emitters,
respectively.

• Propose a path-level sample reweighting framework for path
guiding, where the weights can be computed from guiding
distributions of multiple iterations.

• Demonstrate that path reweighting stabilizes individual
sample weights, making the estimator more robust to finer
spatial and temporal subdivisions of training samples.

• Develop an efficient mixture-based reweighting algorithm
with provable consistency and reduced overhead.

2 MOTIVATION
Physically-based rendering computes the Monte Carlo estimation
of the path integral [Veach 1997]

𝐼 =
∫
P
𝑓 (𝒙)d𝒙, (1)

where 𝑓 (𝒙) is themeasurement contribution function andP is path
space comprised of all paths 𝒙 . A typical path tracer guided by his-
torical path samples [Müller et al. 2017; Ruppert et al. 2020; Vorba
et al. 2014] uses a sequence of distributions 𝑝1 (𝒙), 𝑝2 (𝒙), ..., 𝑝𝑀 (𝒙)
trained iteratively as proposals. Each proposal is typically amixture
of a fitted distribution and a defensive sampling technique (e.g.,
BSDF sampling). The importance weight of a sample drawn from
𝑝𝑖 can be expressed as 𝑓 (𝒙)/𝑝𝑖 (𝒙), and the Monte Carlo estimation
of Eq. (1) is often given using the samples from the last iteration,
i.e., ⟨∫

P
𝑓 (𝒙)d𝒙

⟩
=

1
𝑛𝑀

𝑛𝑀∑
𝑗=1

𝑓 (𝑿𝑀,𝑗 )
𝑝𝑀 (𝑿𝑀,𝑗 )

. (2)

Here, we drawn 𝑛𝑖 independent samples from 𝑝𝑖 and 𝑿𝑖, 𝑗 refers
to the 𝑗-th sample in 𝑖-th iteration. The importance weight of these
samples is computed only from the distribution of the last iteration.

Although many samples are generated during training (i.e.,
iteration 1 ∼ 𝑀 − 1), considering the potential high variance of
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Fig. 3. Fitting the radiance distribution predominated by a line-shaped
light source in a glass shade. We visualize distributions at the center of
the floor. Fitted distributions, especially in early iterations, are extremely
noisy, which can be alleviated by using a mixture across iterations. Three
rows are fitted using the official implementation of PPG [Müller et al. 2017],
the quadtree in the OpenPGL library [Herholz and Dittebrandt 2022], and
the parallax-aware mixture distribution [Ruppert et al. 2020] in OpenPGL,
respectively. The second and fourth columns showcase renderings using
these distributions at 64 spp.

these estimations, they are not splatted into the image. Thus, the
overhead of training remains a limitation of conventional guiding
approaches, and the primary solution lies in amalgamating all
these estimations produced during training into the final rendering
image.
Previous methods [Müller 2019] combine the estimations given

by each iteration in image space. This introduces a constant (over a
pixel or the whole image) weighting factor 𝑤𝑖 . The optimal choice
of this (globally constant) weight is proportional to the reciprocal
of pixel variance [Havran and Sbert 2014; Müller 2019].

However, since the proposal distribution changes across itera-
tions, convergence rates typically vary across different parts of
path space, as illustrated in Fig. 2. Notably, this issue cannot
be completely addressed by employing per-pixel variance, as it
only captures differences in image space and treats a pixel as
a whole entity, regardless of the energy variation in path space.
Even in a pixel with high variance, some parts of path space may
still be well sampled, and samples could form a good estimation
within that region. Nevertheless, all these samples will receive a
low weight when employing per-pixel variance-based weighting.
Moreover, per-pixel variance introduces significant bias due to
strong correlations between weights and estimations. Additionally,
image-space combinations neglect information regarding the pro-
posal distribution, which could also provide information about the
quality of samples in each iteration beyond the overall variance of
estimations.

3 METHODOLOGY
The above insights prompt us to leverage the densities of proposal
distributions to compute spatio-directional varying combination

Fig. 4. Scatter plots of sample values (i.e., importance weights) before
and after reweighting. Our reweighting procedure effectively decreases
the weights (colored in blue) of many samples with high values, while
increasing the weights (colored in red) of most samples with low values.

weights. To begin with, we present a formal definition of path-level
sample reweighting for guiding approaches.

3.1 Path-level reweighting
Formally, we combine the path samples by introducing a path-level
weighting factor 𝑤𝑖 (𝒙), which varies for different light paths over
the whole path space. This leads to the following estimation:⟨∫

P
𝑓 (𝒙)d𝒙

⟩
=

𝑀∑
𝑖=1

1
𝑛𝑖

𝑛𝑖∑
𝑗=1

𝑤𝑖 (𝑿𝑖, 𝑗 ) 𝑓 (𝑿𝑖, 𝑗 )
𝑝𝑖 (𝑿𝑖, 𝑗 )

. (3)

Since paths are incrementally constructed in guided path tracing,
the probability density is a product of several conditional densities:

𝑝𝑖 (𝒙) = 𝑝𝑖 (𝒙1)𝑝𝑖 (𝒙2 |𝒙1)
𝑁−1∏
𝑗=2

𝑝𝑖 (𝒙 𝑗+1 |𝒙 𝑗 , 𝒙 𝑗−1) . (4)

Here, 𝑁 represents the length of the path 𝒙 and 𝒙𝑖 denotes the 𝑖-
th vertex of 𝒙 , with 𝒙1 being the lens vertex. Using the fact that
the position of each vertex 𝒙 𝑗 is decided by vertex 𝒙 𝑗−1 and the
direction 𝝎 𝑗−1, we can rewrite the above equation as

𝑝𝑖 (𝒙) = 𝑝𝑖 (𝒙1)𝐺 (𝒙1, 𝒙2)𝑝𝑖 (𝝎1 |𝒙1)
𝑁−1∏
𝑗=2

𝐺 (𝒙 𝑗 , 𝒙 𝑗+1)𝑝𝑖 (𝝎 𝑗 |𝒙 𝑗 , 𝒙 𝑗−1),

(5)
where 𝝎𝑖 represents the direction from 𝒙𝑖 to 𝒙𝑖+1 and 𝐺 (𝒙 𝑗 , 𝒙 𝑗+1)
is the geometric factor [Veach and Guibas 1995a] including the
mutual visibility term. The weighting factors should be normalized
across iterations, i.e., for all 𝒙 ,

∑𝑀
𝑖=1𝑤𝑖 (𝒙) = 1. There is much

space for designing weights as long as they reflect the effectiveness
of a certain iteration in sampling a specific path. Generally, for
each path 𝒙 , the combination weight𝑤𝑖 (𝒙) should be larger in the
iteration with a higher sampling density 𝑝𝑖 (𝒙) or more samples. It
could also be guided by auxiliary information, such as the overall
variance of a technique [Grittmann et al. 2019]. Below, we first
justify the general advantage of employing path-level reweighting.

Benefits of path-level reweighting. Compared to image-level com-
bination methods, the primary benefit of our proposed reweighting
lies in its ability to stabilize the values (i.e., importance weights) of
individual samples. Since guiding distributions are reconstructed
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Fig. 5. Validation of the benefit of our path-level reweighting without
correlation through a decorrelated (unbiased) variant.We show the relative
variance map and RelMSE at equal sample rates (32 spp).

from a finite number of samples, some regions are often poorly
fitted, especially in early iterations. An example is shown in
Fig. 3. As seen, fitted distributions may even miss specific target
distribution patterns, leading to an extremely small probability
density 𝑝𝑖 (𝒙) while 𝑓 (𝒙) is still large. Consequently, samples in
these regions will receive excessively high importance weights
𝑓 (𝒙)/𝑝𝑖 (𝒙), which would introduce high variance when combined
into the final estimation.
Fortunately, a proper path-level reweighting scheme could cap-

ture specific iterations where some regions are poorly fitted,
assigning them lower weights locally to mitigate the high variance
they inject into the final estimation. This could be done by
assigning lower𝑤𝑖 (𝒙) to iterations with relatively lower 𝑝𝑖 (𝒙). As
showcased in Fig. 4, many samples with high importance weights
are weighted down (below the dashed line) after our reweighting
process. Conversely, samples with low importance weights are
mostly weighted up (above the dashed line). As a result, this
reweighting process stabilizes the importance weights of samples
without modifying the sampling process, effectively reducing the
noise level.
Nevertheless, a unique issue in path guiding lies in the inter-

dependence between distributions and samples. As weights are
determined from multiple distributions fitted from samples, the
weight of a particular sample indirectly depends on other samples.
While this correlation could potentially decrease noise levels1, it
introduces bias into the estimation.

Validation and discussion. To discern how much variance reduc-
tion is coming from this correlation, we develop an impractical
variant with reduced correlation. We splat half of the samples into
the image and the other half into the distribution. The number of
passes2 for each iteration remains the same as the regular variant,
but the samples per pass are doubled to ensure that the total
number of samples in the image and distribution matches that of
the regular variant. Fig. 5 demonstrates that this variant yields
results with higher variance than the correlated variant but much
lower than the baseline. This confirms that only a small portion of
variance reduction stems from correlations.

1For instance, let 𝑿𝑖 denote the set of samples generated in the 𝑖-th iteration. If 𝑿𝑖−1
includes a sample with high importance weight (i.e., it is rarely found but contributes
significantly), 𝑝𝑖 will feature a peak in this region. Consequently, when reweighting
samples using a mixture comprising 𝑝𝑖−1 and 𝑝𝑖 , the aforementioned high-weight
samples will receive an excessively low weight.
2Each guiding iteration contains one ormultiple passes, while in each pass, the number
of samples per pixel is a constant (2 in our experiments).

(x4 subdiv.)

Fig. 6. Our distribution mixture makes it possible to use a 4× finer spatial
subdivision to eliminate the striped artifacts due to spatial subdivision,
while the conventional approach yields higher variance. Stochastic spatial
filtering is enabled. We render direct illumination only for clearer
differences. All methods take 72 spp in total using the same sample
allocation.

Table 1. Our method is robust to sample allocation across iterations.
We show the RelMSE of renderings. Our method demonstrates a more
pronounced advantage when samples receive a finer division. Addition and
multiplication represent concatenation and repeatition, respectively.

Allocation Cbox (32 spp) Ajar (32 spp)

I. Var Ours (Ratio) I. Var Ours (Ratio)

[1, 2, 4, 9] 2.55 0.77 3.31× 14.61 3.28 4.46×
[1] × 4 + [1, 2, 4, 5] 2.86 0.53 5.40× 11.69 2.61 4.48×
[1] × 8 + [1, 2, 5] 3.52 0.43 8.17× 16.30 2.00 8.17×
[1] × 16 4.04 0.42 9.71× 18.51 1.79 10.36×

3.2 Variance reduction potentials via sample division
Existing approaches strive to reduce the noise level of distributions
and improve the robustness by keeping larger spatial regions (in-
cluding 4,000-32,000 samples typically) when performing subdivi-
sions and increasing the number of samples per iteration. However,
these strategies come with limitations. Sharing distributions over a
large spatial region diminishes accuracy, especially when dealing
with scenes characterized by strong spatio-directional correlation
[Dodik et al. 2022]. Moreover, increasing the number of samples
per iteration could slow down fitting [Ruppert et al. 2020].

By sharing information across iterations, our method intrinsi-
cally enhances robustness, enabling a finer subdivision of samples
both spatially and across iterations. In particular, when reducing
the threshold of spatial subdivisions, our approach produces fewer
artifacts attributable to parallax and subdivisions, which results in
reduced overall variance. At the same time, conventional guiding
could suffer from increased variance. An example is shown in Fig.
6, where the traditional approach already employs spatial filtering.

Similarly, allocating samples over iterations is also an important
strategy for path guiding. The number of samples is often doubled
with each iteration to ensure the quality of distributions, but this
leads to a long turnaround time, which slows the convergence
in difficult scenes [Ruppert et al. 2020]. By reweighting samples
considering their probability density in each iteration, our combi-
nation could still produce low-variance results even if some paths
are insufficiently sampled in certain iterations. This makes guiding
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Fig. 7. A 1D example of the mixture-based reweighting scheme. We show
iteratively learned proposals (sequentially from light to dark), and mixture
distributions without variance awareness (red, Ours) and with variance
awareness (yellow, VA). In the right-most subplot, we show the estimation
mean and standard derivation to illustrate the variance and bias.

algorithms more robust to sample division, enabling a wide range
of allocation schemes, as demonstrated in Table 1.

3.3 Mixture-based weighting schemes
Until now, our discussion is under a general setting that the
combination weight 𝑤𝑖 (𝒙) should be larger in the iteration that
has a higher sampling density 𝑝𝑖 (𝒙) and more samples. This is
compatible with a variety of designs of weighting schemes.
A simple and effective choice is the balance heuristic [Veach and

Guibas 1995b], which leads to the following weighting factor:

𝑤𝑖 (𝒙) =
𝑛𝑖𝑝𝑖 (𝒙)∑𝑀

𝑘=1 𝑛𝑘𝑝𝑘 (𝒙)
. (6)

This weighting scheme is used by adaptive multiple importance
sampling (AMIS) [Cornuet et al. 2009], proved to have the potential
to leverage the most efficient proposal distribution as the poorly
performing distributions are gradually phased out as 𝑀 increases.
This process can also be understood as if the samples were drawn
from a mixture of distributions over all iterations. Moreover,
within the framework of path guiding, spatial hierarchies usually
undergo iterative refinement [Dodik et al. 2022; Müller et al. 2017;
Ruppert et al. 2020]; thus, initial iterations will generate more
coarse distributions while later iterations capture finer details
but may risk over-fitting. In Fig. 7, we present a 1D example
where the distribution of each iteration complements the others,
enabling the utilization of a more robust distribution to determine
importance weights. Moreover, an important advantage of this
reweighting scheme is its provable consistency. We discuss it in
the supplemental document.

Employing variance estimates. In certain cases, the above weight-
ing scheme may yield higher variance compared to the inverse-
variance-weighted combination, particularly when the last itera-
tions accurately fit the target integrand, which, ideally, already
produces zero-variance estimates. In this case, incorporating early
distributions into the mixture could increase variance.
Inspired by howvariance estimates improve the balanced-heuristic

MIS [Veach and Guibas 1995b], we can similarly introduce a per-
pixel variance-aware factor [Grittmann et al. 2019], the ratio of the

w/o VA

Avg=0.143
RelMSE=0.488

w/ VA

Avg=0.140
RelMSE=0.217

5% Defensive
w/o VA

Avg=0.143
RelMSE=0.231

w/ VA

Avg=0.142
RelMSE=0.188

50% Defensive

Fig. 8. We render a torus positioned on the ground under sunlight. Since
sunlight can be quite accurately fitted by guiding distributions, variance
awareness proves advantageous in diffuse regions (e.g., the upper left of the
image) when employing minimal (5%, left) defensive sampling. However,
this advantage is less visible in other regions or when employing a standard
amount (50%, right) of defensive sampling. Through the average intensity
(Avg), we observe that variance awareness leads to slightly more bias.

second moment 𝑢2,𝑖 to the sample variance 𝜎2𝑖 for each iteration 𝑖 .
Then, each distribution is weighted accordingly:

𝑤𝑖 (𝒙) =
𝑛𝑖𝑣𝑖𝑝𝑖 (𝒙)∑𝑀

𝑘=1 𝑛𝑘𝑣𝑘𝑝𝑘 (𝒙)
, 𝑣𝑖 =

𝑢2,𝑖

𝜎2𝑖
. (7)

Nevertheless, it is not theoretically guaranteed to achieve consis-
tent convergence when variance factors are used, and we also
empirically observe more bias. Furthermore, as showcased in Fig.
8, the proposal distribution hardly fits the full integrand accurately
in practice, which leads to a small variance factor (i.e., less than 3 in
our tests), which limits the potential variance reduction. Therefore,
we do not employ variance awareness in our experiments.

3.4 Acceleration and implementation
The computational and storage overhead is crucial to enable practi-
cal usage of path-level reweighting, which necessitates special care
when implementing the sample reweighting process. In particular,
to reweight the samples generated during training, we store them
in memory. Once the proposal distribution of the final iteration is
determined, these stored samples are reiterated. For each sample,
we calculate the weights as per Eq. (6), where each probability
density is expanded as in Eq. (5). Notably, the geometric terms
cancel out, simplifying the computation to the product of a series
of directional probability densities. However, a straightforward
implementation necessitates (𝑁 − 1)𝑀 queries for probability
densities. Considering the average computational cost for querying
spatial and directional structures as 𝐶𝑆 and 𝐶𝐷 respectively, the
overall time complexity amounts to O((𝐶𝑆 +𝐶𝐷 )𝑁𝑀).

In practice, especially for large scenes, 𝐶𝑆 can significantly
outweigh 𝐶𝐷 . To this end, we retain pointers to historical direc-
tional distributions within leaf nodes of the spatial hierarchy. After
subdivisions of spatial nodes, only pointers are copied to avoid
redundancy; new nodes may thus point to the same historical
distribution. This optimization reduces the time complexity to
O(𝐶𝑆𝑁 +𝐶𝐷𝑁𝑀), almost halving the computational overhead.
For each path sample, we store its contribution and the positions

of these 𝑁 vertices. The PDF of defensive sampling and the direc-
tion at the last vertex are also required. We use single-precision
float numbers (except for the direction, which is compressed
into two 16-bit fixed-point numbers) and three channels for the
spectrum. Hence, the 𝑁 vertices require 4𝑁 float numbers while
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Fig. 9. The relative bias and relative squared error map of rendering the
Ajar scene using 256 spp. We show RelMSE, relative mean absolute bias,
and rendering time (seconds), respectively. Using a constant 500MB sample
storage, reweighting using partial mixtures (Ours*) performs much better
than not reweighting low-value samples (Naïve) and enjoys comparable
variance reduction and bias with storing all samples (Ours) using 973 MB.

the spectrum requires 3 float numbers, so a path costs 16(𝑁 + 1)
bytes of storage. Here, we only need to store samples with non-
zero contributions; samples with zero contributions are directly
splatted to the image. Nevertheless, the extra storage required by
our method grows steadily as the number of samples increase.

3.5 Specifying a constant sample storage
The storage of path samples remains an inherent challenge of
path-level reweighting. In practice, this can be alleviated by
focusing more on the samples with higher importance weights3.
In particular, we maintain a buffer with a constant size specified
by users as a hyperparameter, which we set to 500 MB by default.
When new samples are produced, we insert them into the buffer,
a binary heap with importance weights as keys. Once the memory
limit is exceeded, we remove samples with the lowest importance
weights and simultaneously splat them to the image.

Unfortunately, when those samples are removed from the buffer,
the distribution of the last few iterations is not generated, thus,
the full mixture is unavailable. A simple choice is not to reweight
any sample that is splatted during the rendering process. Since
the aforementioned fact that many samples with high importance
weights are weighted down and vice versa, this could lead to
additional bias.
Our solution is still reweighting those samples using a partial

mixture of distributions generated till the current (𝑖-th) iteration:

𝑤𝑖 (𝒙) =
𝑛𝑖𝑝𝑖 (𝒙)∑𝑖

𝑘=1 𝑛𝑘𝑝𝑘 (𝒙)

∑𝑖
𝑘=1 𝑛𝑘∑𝑀
𝑘=1 𝑛𝑘

. (8)

The performance of this method depends on how similar the
partial mixture and the full mixture are. Despite without theoretical
guaranteed consistency, we found that reweighting with a partial
mixture performs well in variance reduction, bias, storage, and
computational overhead. As shown in Fig. 9, the bias using a partial
mixture (Ours*) is smaller than not reweighting any early-splatted
samples (Ours* Naïve) and identical to using unlimited storage
(Ours). This suggests that specifying a constant sample storage is a
good choice for practical scenarios when memory is a bottleneck.
3Inspired by density-based outlier rejection, we also evaluated choosing the path
samples with the largest distances to their neighbors.We found the difference between
our method and choosing the highest importance weight samples is not visible.

Before reweight

Iteration 0

After reweight

Iteration 2 Iteration 4 

Ours

Result

Inverse Var

Fig. 10. In a pool scene with still water, we show the contribution of
each iteration before and after reweighting. The sum of these partial
renderings weighted by the number of samples yields the final result. The
illumination from the sun is only well-fitted in the last iteration. Our
reweighting effectively makes use of the well-sampled region from each
iteration. For example, the ladder contributesmore in early iterations, while
the underwater region is weighted more in later iterations.

Pool (5 sec)

Reference Discard Inverse Var Ours

RelMSE 2.45 (1.00x) 1.41 (0.57x) 0.77 (0.31x)

Spaceship (5 sec)

Reference Discard Inverse Var Ours

RelMSE 0.55 (1.00x) 0.36 (0.65x) 0.21 (0.38x)

Fig. 11. Equal-time comparison with discard training samples [Müller et al.
2017] and image-level inverse-variance weighting [Müller 2019].

4 RESULTS
We have implemented our combination method upon Practical
Path Guiding (PPG) [Müller et al. 2017] in Mitsuba 0.6 [Jakob
2010] and enable the stochastic spatio-directional splatting [Müller
2019]. For quantitative comparisons, we use RelativeMean Squared
Error (RelMSE) as error metrics, with 𝜖 being 0.01. We also
show Symmetric Mean Absolute Percentage Error (SMAPE) in
some experiments. For our method, we set the spatial subdivision
threshold to 1000 in the visual comparison of the Pool and Glossy
Kitchen scene to validate the robustness of our method when using
a finer subdivision while using 4000, the same as the original PPG,
for other figures. Since computing pixel variance estimates require
at least two samples per pixel, we use 2 spp per pass. Unless
otherwise noted, the samples per iteration are doubled, but the first
4 iterations are allocated 2 spp to accelerate the adaptation of spatial
structure following [Müller 2019]. For a fair comparison, both the
inverse variance and our reweighting combine all images. Training
is disabled in the final iteration of guiding. We disable Russian
roulette and next-event estimations. Timings are done with a 24-
core i9-13900KF processor.
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Iteration 0 Iteration 0 Reweighted Iteration 0 Difference Iteration 6 Iteration 6 Reweighted Iteration 6 Difference Final Result

Iteration 3 Iteration 3 Reweighted Iteration 3 Difference Iteration 6 Iteration 6 Reweighted Iteration 6 Difference Final Result

Fig. 12. Visualization of the contribution of each iteration before and after reweighting. The difference image illustrates that our reweighting procedure
decreases the intensity of pixels colored in blue, while increasing the intensity of pixels colored in red.

Reference
Inverse Var

852.178
Ours Decorrelated

88.974
Ours

36.980

0

2

4

Reference
Inverse Var

43.507
Ours Decorrelated

5.755
Ours
4.638

0

1

2

Fig. 13. Validation of the benefit of path-level reweighting without correlation through a decorrelated variant on the Kitchen scene at 24 spp and 128 spp,
which includes challenging light paths. Only in this experiment do we enable Russian roulette, which start from the 5th bounce.

Reference
Inverse  Var

1.040
Ours Decorrelated

0.694
Ours
0.586

0

1

2

Fig. 14. Validation of the benefit of path-level reweighting on the bathroom scene at 24 spp, where the radiance field is relatively low-frequency.

Validation of the contribution of each iteration. In Figs. 10 and
12, we visualize the relative contribution of each iteration divided
by the number of samples. Certain regions of the scene, such as
those well handled by BSDF sampling, receive more contributions
from early iterations. Conversely, features that require numerous
iterations to fit, such as the caustics in the pool, are predominantly
contributed by the last few iterations. Moreover, in regions where

excessive variance arises from distribution over-fitting, as exempli-
fied in the second scene of Fig. 12, our method adeptly attenuates
their impact, thereby combining into a low-variance final result.

Comparison with inverse-variance weighting. Due to the instabil-
ity and bias that could be introduced by per-pixel variance-based
weighting (even when averaged per block or filtered as illustrated
in Fig. 16), conventional practice dictates their averaging over
the whole image [Müller 2019]. However, this fails to capture
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Fig. 15. Convergence curves of various combinations techniques, including discarding training samples, inverse-variance-weighted combination, and our
path-level reweighting. We use a 500 MB constant sample storage. We show RelMSE (versus spp) averaged over three independent runs.

Pool (24 spp)

Reference Accumulate Per-Pixel Var Per-Pixel Var* Removal Ours+Removal Ours

RelMSE 4.83 (1.00x) 0.44 (0.09x) 0.19 (0.04x) 0.13 (0.03x) 0.13 (0.03x) 0.67 (0.14x)

Fig. 16. Comparison with other pixel-level combination techniques: simply accumulating all samples, inverse-variance-weighting using per-pixel estimates
(Per-Pixel Var) and filtered ones (Per-Pixel Var*), and accumulating using outlier removal [Zirr et al. 2018].

Ajar (20 spp)

Reference Accumulate Removal Ours+Removal Ours

RelMSE 37.02 (1.00x) 0.34 (0.01x) 0.34 (0.01x) 4.01 (0.11x)

Fig. 17. We compare our method with simply accumulating all samples and accumulating using outlier removal [Zirr et al. 2018], which leads to much more
bias than our reweighting. Our method could also be used together with outlier removal to reduce bias.

Ajar (16 spp) Ajar (128 spp) Pool (16 spp) Pool (128 spp)

−0.2

−0.1

0.0

0.1

0.2

Fig. 18. Visualization of the relative bias computed by averaging over 256 independent runs and down-sampled to reduce noise. We observe that the bias
progressively diminishes as the number of samples increases, which empirically validates the consistency of our method.

the varying convergence rates across different regions within
path space. As a result, the combined images suffer from high
variance in some regions, as shown in Fig. 11. When employing
our path-level reweighting, paths that are insufficiently sampled
in certain iterations are weighted down (Fig. 4), which reduces

the variance they introduce. Consequently, as demonstrated in the
visual comparison in equal time (Fig. 11), our approach often leads
to more noise reduction than inverse-variance weighting.

Impact of scene complexity and budgets. Additionally, ourmethod
exhibits more pronounced benefits in scenes characterized by
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Table 2. Rendering statistics of our experiments (24 spp). We report the
ratio of variance reduction and rendering time compared to the inverse-
variance-weighted combination. We show the storage overhead of samples
(S) and distributions (D), respectively. We also report the original memory
footprint (O) of guiding distributions without history. The last column
(NZ) represents the percentage of samples (over the entire guiding process)
that have a non-zero contribution. The resolution is 1000×1000 for Cbox,
200×200 for Torus, 1440p for Glossy Kitchen, and 720p for other scenes. Our
sample storage would grow as the resolution and spp increases.

Scene Depth RelMSE Time/sec Memory/MB NZ
Max S D O %

Aquarium 12 0.345 (3.0×) 18 (1.13×) 359 160 49 14
Ajar 4 2.235 (6.8×) 11 (1.08×) 105 84 25 10
Bathroom 4 0.268 (1.2×) 17 (1.11×) 240 67 20 30
Cbox 3 0.477 (5.5×) 5 (1.03×) 58 65 20 6
Glossy Kitchen 10 1.564 (2.8×) 58 (1.16×) 716 465 143 11
Kitchen 10 6.438 (18.4×) 21 (1.16×) 353 169 51 26
Pool 4 0.342 (3.2×) 9 (1.17×) 321 35 11 57
Spaceship 10 0.041 (2.1×) 13 (1.41×) 625 70 22 90
Torus 8 0.203 (1.5×) 1 (0.97×) 32 2 1 82

challenging light paths. For example, in Fig. 14, the variance
reduction is relatively marginal compared to scenes that include
many hard-to-sample paths (e.g., Fig. 13). The benefit is also more
significant when using a low sample budget in Fig. 13. These
scenarios typically entail distributions with a higher noise level,
where a mixture-based reweighting effectively reduces the noise in
distributions, thus leading to more stable importance weights and
lower variance.

Convergence plot. In Fig. 15, we investigate the convergence
behavior when using different combination techniques, where
our proposed reweighting consistently outperforms previous ap-
proaches. Moreover, the advantage is more evident with a smaller
sample budget. With an increase in the number of samples, the
distributions tend to be more accurate, which reduces the potential
impact of sample combination.

Comparison with accumulation and outlier removal. In Fig. 17 and
Fig. 16, we compare our method with directly accumulating all
samples and an outlier removal [Zirr et al. 2018]. As seen, splatting
all samples without reweighting often leads to excessively high
variance since the initial iterations are extremely noisy. Utilizing
outlier removal upon the accumulated samples [Reibold et al. 2018]
helps mitigate problematic samples at the cost of visible bias. After
all, outlier removal solely operates on the values (i.e., importance
weights) of samples, whereas our reweighting leverages the infor-
mation of distributions. Furthermore, our weights are normalized
over iterations. This results in substantially lower bias compared
to outlier removal. Additionally, our method can be used together
with outlier removal, almost halving its bias in our experiments.

Bias evaluation. In Fig. 18, we evaluate the bias of our approach
by averaging the renderings from many independent runs and
contrasting them with the reference. Generally, the bias is in the
form of energy loss attributed to the aforementioned correlations
across iterations. The bias remains significantly smaller compared
to the noise level and diminishes gradually as the sample rates
increase.

Inverse Var Ours Ours* Naïve Ours*

−0.1

0.0

0.1

0.105, 0.023, 132 0.056, 0.019, 203 0.051, 0.030, 179 0.054, 0.019, 195

0.0

0.1

0.2

Fig. 19. The relative bias and error map of rendering the Glossy Kitchen
scene using 512 spp. We show the RelMSE, rBias, and rendering time
(seconds), respectively. Using a constant memory (Ours*) is comparable
to unlimited storage (over 10 GB) in variance and bias. The naïve solution,
which does not reweight early-splatted samples, introduces significant bias.

Reference Inverse Var Ours* Naïve Ours*

−0.1

0.0

0.1

0.035, 0.009, 2383 0.022, 0.018, 3838 0.022, 0.010, 3272

0.0

0.1

0.2

Fig. 20. Evaluating high-end rendering on the Glossy Kitchen scene using
1024 spp at 2560 × 1440 resolution. The numbers represent the RelMSE,
rBias, and rendering time (seconds), respectively.
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Fig. 21. The impact of the sample storage on the relative absolute bias,
relative mean squared error, and rendering time. Reweighting using a
partial mixture enjoys almost consistently lower bias than the naïve variant
at the cost of slightly more computational overhead. The difference in
RelMSE is not visible. As the storage goes to infinity, the method becomes
consistent.

Performance analysis. We present the statistics of our exper-
iments in Table 2. The storage overhead is generally around
hundreds of megabytes in our test, which is acceptable in practical
scenarios. The extra computational time majorly comes from the
evaluation of weights, which is around 30% in our scenes and even
neglectable in scenes where most paths miss the light source so the
number of paths required to be reweighted is small.

Sample storage. In Figs. 9 and 19, we compare using constant
sample storage against using unlimited ones. Simply not reweight-
ing any low-contribution samples results in higher bias levels
than reweighting all samples. Through still reweighting using a
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Spaceship (12 spp)

Reference D-Quad I-Quad O-Quad D-VMM I-VMM O-VMM D-PAVMM I-PAVMM O-PAVMM

RelMSE 0.06 (1.00x) 0.03 (0.56x) 0.02 (0.38x) 0.06 (1.04x) 0.03 (0.54x) 0.03 (0.42x) 0.06 (0.95x) 0.03 (0.56x) 0.02 (0.36x)

Reference D-Quad I-Quad O-Quad D-VMM I-VMM O-VMM D-PAVMM I-PAVMM O-PAVMM

SMAPE 0.25 (1.00x) 0.20 (0.83x) 0.17 (0.68x) 0.26 (1.05x) 0.20 (0.82x) 0.17 (0.70x) 0.24 (0.99x) 0.20 (0.81x) 0.16 (0.64x)

Kitchen (12 spp)

Reference D-Quad I-Quad O-Quad D-VMM I-VMM O-VMM D-PAVMM I-PAVMM O-PAVMM

RelMSE 0.29 (1.00x) 0.16 (0.54x) 0.13 (0.44x) 0.30 (1.04x) 0.16 (0.54x) 0.14 (0.47x) 0.27 (0.91x) 0.14 (0.49x) 0.11 (0.37x)

Reference D-Quad I-Quad O-Quad D-VMM I-VMM O-VMM D-PAVMM I-PAVMM O-PAVMM

SMAPE 0.46 (1.00x) 0.37 (0.80x) 0.35 (0.76x) 0.46 (1.00x) 0.36 (0.78x) 0.35 (0.76x) 0.43 (0.92x) 0.33 (0.71x) 0.31 (0.68x)

Pool (14 spp)

Reference D-Quad I-Quad O-Quad D-VMM I-VMM O-VMM D-PAVMM I-PAVMM O-PAVMM

RelMSE 0.72 (1.00x) 1.18 (1.63x) 0.70 (0.97x) 0.84 (1.16x) 1.56 (2.17x) 0.70 (0.97x) 0.85 (1.18x) 1.84 (2.56x) 0.79 (1.09x)

Reference D-Quad I-Quad O-Quad D-VMM I-VMM O-VMM D-PAVMM I-PAVMM O-PAVMM

SMAPE 0.43 (1.00x) 0.32 (0.75x) 0.29 (0.66x) 0.40 (0.93x) 0.26 (0.60x) 0.24 (0.55x) 0.40 (0.93x) 0.26 (0.60x) 0.24 (0.56x)

Fig. 22. Evaluation of our approach’s generality on three distributions (quadtree, vMF mixture, and parallax-aware vMF mixture) from the OpenPGL library
[Herholz and Dittebrandt 2022]. We compare discarding training samples (D), inverse-variance weighting (I), and our path-level reweighting (O).

partial mixture, we use constant sample storage to produce results
identical to unlimited storage in our test scenes, consistently better
than not reweighting any low-contribution samples as shown in
Fig. 21. We also showcase a high-resolution example in Fig. 20.

Distribution models. Our proposed method generalizes over var-
ious distribution models, as shown in Fig. 22 on three distributions
in Intel’s OpenPGL library [Herholz and Dittebrandt 2022]. Empir-
ically, our method produces the lowest variance consistently.

5 CONCLUSION
The rigid division between training and rendering presents numer-
ous challenges in the development of guiding algorithms. Unlike
conventional approaches that address this issue simply through a
weighted summation of images, our method provides a thorough
reassessment of the whole sample set. We assign weights to
individual path samples, reflecting the quality disparities within
the distributions. By evaluating how these samples are generated
and identifying well-sampled regions against potential flaws, we
endeavor to optimize sample utilization while mitigating risks of
high variance, outliers, or biasedness. This suggests good potential
for unbounded variance reduction and yields robust, practical
performance with provably consistent convergence under certain
conditions.

Discussions and future works. Themain limitation of our method
is the storage and computation cost, which can be prohibitive for
some uses, especially when the resolution and number of samples
are high. In such cases, the computational overhead is more severe,
so the improvement is minimal in an equal-time setting. We show
examples in the supplemental document. Still, certain combinations
with simpler strategies may be helpful. For instance, one can apply
our reweighting during the early iterations and switch to inverse-
variance weighting after the distribution is converged later.

Besides, the storage of path sample may also create challenges
for GPU implementations [Lu et al. 2024]. Also, for neural methods
[Dong et al. 2023; Huang et al. 2024], the distribution storage could
be more costly. Note that our optimization for spatial hierarchy
mainly works for a regular kd-tree [Fan et al. 2023; Müller et al.
2017]. For other structures [Dodik et al. 2022; Reibold et al. 2018],
a full copy of historical distributions may be required.

Additionally, next-event estimation (NEE) is currently disabled
in our experiments, but enabling it is straightforward. In particular,
assuming we use a balanced heuristic, the PDF would be changed
to a mixture of light sampling, BSDF sampling, and (averaged)
guided sampling. However, the implementation complexity would
increase due to substantial changes required in the path storage.
Future works could extend our method to more complicated
guiding approaches on complex rendering algorithms including
those with light sampling, bidirectional connections, and vertex
merging.

Lastly, future opportunities for variance reduction still exist.
While reweighting during training (as in the original AMIS [Cor-
nuet et al. 2009]) could further reduce variance, it increases
overhead and additional bias. Importantly, the consistency proof
holds only when reweighting is not performed during training.
Thus, we only reweight when generating the final estimation. Yet,
its variance reduction potential may deserve future research. Also,
our balanced-heuristic weighting may not be the best weighting
scheme in terms of variance reduction or bias level, as demon-
strated in Fig. 8.
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