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Fig. 1. Equal-time comparison between NeuralJS [Gu et al. 2022] and our DSCombiner in the Swimming Pool scene. DSCombiner achieves a superior

combination of biased and unbiased renderings compared to the state-of-the-art techniques, especially for renderings generated by different integrators. Left,

from top to down: results of NeuralJS (PT+OIDN), NeuralJS (PT+SPPM), and DSCombiner (PT+SPPM). Right: close-up comparisons with error metrics.

Monte Carlo rendering often faces a dilemma, namely, whether to choose an
unbiased estimator or a biased one. Although different integrators have been
developed to address various scenarios, no single method can effectively
manage all situations. Thus, finding a good approach to combine different
integrators has always been a topic that warrants exploration.

This work proposes DSCombiner, a new shrinkage estimator that flexibly
combines unbiased and biased estimators (typically generated by different
integrators) in image space into a single estimating procedure, strategically
utilizing the strengths of different integrators while minimizing their weak-
nesses. DSCombiner overcomes the limitation of single shrinkage combiners
by introducing a two-step shrinkage towards a noise-free radiance prior.
We derive optimal shrinkage factors for the two steps within a hierarchical
Bayesian framework, and provide a deep learning-based method to improve
the results. Comprehensive qualitative and quantitative validations across
diverse scenes demonstrate visible improvements in image quality, as com-
pared with previous image-space and path-space combiners.
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1 INTRODUCTION

Over the years of development, Monte Carlo (MC) rendering has
remained the de facto standard for offline physically-based light
transport simulation [Christensen and Jarosz 2016; Novák et al. 2018;
Pharr et al. 2023] and is steadily gaining popularity in real-time sce-
narios [Bitterli et al. 2020; Cascioli and Reznikov 2024; Wyman et al.
2023]. Despite their simplicity of implementation, ability to handle
complex lighting effects, and scalability, existing MC rendering al-
gorithms are always facing the bias-variance dilemma. Specifically,
unbiased algorithms (e.g., path tracing [Kajiya 1986]) estimate the
pixel’s intensity with no statistical bias but suffer from displeasing
noise (i.e., variance), which makes them require a huge number of
samples to converge. Biased algorithms (e.g., progressive photon
mapping [Hachisuka et al. 2008] or path tracing with a denoiser
[Bako et al. 2017; Qiao et al. 2024; Vogels et al. 2018; Zheng et al.
2021]), on the other hand, excel in suppressing the influence of noise,
but at the cost of introducing bias in their estimators.

An appealing and increasingly active trend to accelerate the con-
vergence rate of MC rendering is by employing a post-correction
framework that combines both unbiased and biased rendering pairs.
For instance, recent work has demonstrated that the biased denois-
ing results can be blendedwith their noisy counterparts generated by
an unbiased estimator to improve the quality of denoisers [Firmino
et al. 2022, 2024; Gu et al. 2022]. Typically, screen-space blending is
achieved by the James-Stein (JS) estimator [James and Stein 1961],
which is a well-known shrinkage estimator using a single shrinkage
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factor. The key insight of the JS estimator is that it can outper-
form the maximum likelihood estimator (e.g., the sample mean) by
shrinking the individual estimates towards the overall mean.

Stein-like shrinkage estimators with a single shrinkage factor are
particularly promising for lowering the systematic bias for learning-
based denoisers [Gu et al. 2022]. In this context, the shrinker aims
to refine the output of a denoiser by shrinking the estimated values
towards the raw noisy data. This minimizes the risk of estimation in
terms of the mean squared error (MSE) between the final denoised
image and the noise-free ground truth, under the assumption that
variance is homogeneous in each local patch. However, when com-
bining two estimators with different MC integrators (e.g., one is
path tracing and the other is stochastic progressive photon map-
ping), the single shrinkage method is usually sub-optimal since both
estimators may have high variance that varies spatially and wildly.

To address the aforementioned problem, we propose DSCombiner,
a double shrinkage estimator for MC renderings. This estimator
could effectively combine a wide range of unbiased and biased MC
integrators, providing flexibility in selecting the most appropriate
methods for various rendering scenarios. DSCombiner operates in
two passes: first, it computes a convex combination of the unbiased
and biased estimators using the shrinkage factors derived from
the variance and bias of both estimators. Then, augmented by a
well-designed radiance prior, an additional shrinkage pass is applied
to the output of the first pass, resulting in reduced variance. We
derive the theoretically optimal shrinkage factors governing the
two passes within a hierarchical Bayesian framework, and provide
a deep learning-based practical solution to refine the results.
In summary, our main contributions are as follows:
• We introduce the first double shrinkage framework, dubbed
DSCombiner, to flexibly and efficiently combine a wide range
of unbiased and biased MC integrators.

• We obtain the shrinkage factors using a hierarchical Bayesian
framework equipped with a learnable convolutional neural
network (CNN). Our pixel-level shrinkage factors make the
combination robust in regions with details.

• We design a radiance prior to further accelerate the conver-
gence of the shrinkage estimator.

Through extensive experiments on multiple challenging scenes, we
demonstrate that our proposed double shrinkage estimator visibly
outperforms its single shrinkage counterparts and improves the
convergence rate of MC renderings.

2 RELATED WORK

Path-space combination of MC renderings. The quality of Monte
Carlo integration is highly affected by its sampling procedure, namely,
how the integrator constructs the light path connecting the camera
and the light source stochastically in Monte Carlo-based ray tracing.
Numerous integrators [Hachisuka et al. 2008; Jensen 2001; Veach
and Guibas 1997] have been developed to tackle various challenges
in light transport simulation. Due to their different focuses, no single
integrator can effectively handle all scenarios. To utilize different
sampling techniques simultaneously, some prior studies [Georgiev
et al. 2012; Hachisuka et al. 2012; Křivánek et al. 2014] combine dif-
ferent integrators in path space using multiple importance sampling

(MIS) [Veach and Guibas 1995]. While MIS is considered the de facto
standard solution for combining estimators generated by different
integrators, its proper application is not that easy, and combining
𝑛 techniques incurs a runtime complexity of O(𝑛2). Additionally,
some integrators (e.g., manifold sampling [Fan et al. 2023; Pediredla
et al. 2020; Zeltner et al. 2020]) do not provide analytical PDFs that
are essential for MIS.

Screen-space combination of MC renderings. Another line of re-
search focuses on combining MC estimates in screen space, drawing
inspiration from the shrinkage estimator used in other fields [Green
and Strawderman 1991; Lavancier and Rochet 2016]. In MC render-
ing, some recent studies have demonstrated that a combination of
rendering results generated by an unbiased integrator with its de-
noised version can outperform either of the two inputs individually.
For example, Back et al. [2020] emphasize the strong correlation in
denoised images (e.g., gradient-domain path tracing [Kettunen et al.
2015] with L2 reconstruction) and develop a combination kernel
to reduce residual errors. Similarly, Gu et al. [2022] and Firmino
et al. [2022] focus on improving the consistency of learning-based
denoisers, mitigating errors introduced by learning-based denoisers
for nearly converged inputs. Besides, Zheng et al. [2021] propose an
ensemble learning-based framework to combine estimates gener-
ated by different denoisers. Otsu et al. [2018] explore a new scheme
of estimator combination through machine learning, which greatly
inspires our work. However, their selected feature representation
results in prohibitive storage costs. This issue motivates us to adopt
an error-based combination framework instead.

MC denoising. To alleviate the noise in images synthesized by MC
integrators, numerous studies have focused on directly manipulat-
ing noisy pixels to reduce variance. Filtering-based methods smooth
the image via a specially designed filtering process, with kernels
ranging from traditional Gaussian [Rousselle et al. 2011], hand-
crafted bilateral filters [Li et al. 2012; Sen and Darabi 2012] to deep
learning-based approaches [Bako et al. 2017; Balint et al. 2023; Vogels
et al. 2018]. Leveraging noise-free G-buffers (e.g., normal, albedo,
and depth), learning-based denoisers can predict high-quality filter-
ing kernels to significantly improve MC rendering. Alternatively,
regression-based methods [Bitterli et al. 2016; Choi et al. 2024; Qiao
et al. 2024] suppress noise by fitting a smooth function to express
pixel values in local image blocks. Notably, some works interpret
the denoising process from a statistical perspective. For instance,
Boughida and Boubekeur [2017] resolve the denoised color through
maximizing a posteriori probability, while Sakai et al. [2024] exclude
unsuitable pixels using the Welch t-test to prevent noticeable bias
from averaging samples with different statistical properties.

3 BACKGROUND AND MOTIVATION

In this section, we begin with a brief review of single shrinkage
methods, with a focus on the prevailing James-Stein shrinkage
[James and Stein 1961], for combining two different MC estima-
tors. Subsequently, we elucidate the motivation behind our new
double shrinkage method. For a more comprehensive explanation
of shrinkage estimators, please refer to [Lavancier and Rochet 2016].
We summarize important symbols in Table 1.
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Table 1. List of important symbols.

Symbol Description

𝑋 Ground truth of the quantity we want to estimate
𝑋𝑢 , 𝑋𝑏 Unbiased and biased estimates of 𝑋
𝜎2𝑢 The variance of unbiased estimate
𝜎2
𝑏
, 𝜉 The variance and bias of biased estimate

𝛾2 The variance of the Gaussian prior distribution for 𝜉
𝑋𝑝 The mean of the Gaussian prior distribution for 𝑋
𝜂2 The variance of the Gaussian prior distribution for 𝑋

Single Shrinkage. Suppose we have an unbiased estimate𝑋𝑢 (vari-
ance: 𝜎2𝑢 ) and a biased estimate 𝑋𝑏 (variance: 𝜎2

𝑏
, and bias: 𝜉) of a

real-valued scalar 𝑋 ∈ R, such that
𝑋𝑢 ∼ N(𝑋, 𝜎2𝑢 ),
𝑋𝑏 ∼ N(𝑋 + 𝜉, 𝜎2

𝑏
),

(1)

where N denotes a normal distribution. We can construct a single
shrinkage estimator by linearly combining them as follows

𝑋Single = 𝜆𝑋𝑏 + (1 − 𝜆)𝑋𝑢 , (2)
where 𝜆 is the shrinkage factor. By carefully selecting the shrinkage
factor, this new estimator 𝑋Single can be shown to improve 𝑋𝑢 , in
terms of MSE (mean squared error), via shrinking 𝑋𝑢 towards 𝑋𝑏 .

James-Stein Shrinkage. SupposeX ∈ R𝑝 is a 𝑝-dimensional vector.
We have an unbiased estimate X𝑢 and a biased estimate X𝑏 . If

• the dimensionality 𝑝 ≥ 3, and
• the variance of X𝑢 is homogeneous across all dimensions (i.e.,
the covariance of X𝑢 is a diagonal matrix 𝜎2𝑢 I),

the James-Stein’s style shrinkage estimator [Green and Strawder-
man 1991; James and Stein 1961]

XJS = 𝜆X𝑏 + (1 − 𝜆)X𝑢 (3)
with

𝜆 =
(𝑝 − 2)𝜎2𝑢

∥X𝑢 − X𝑏 ∥2
(4)

produces a biased estimator of X that achieves lower MSE than any
least squares estimators of X. More specifically, the MSE of XJS

E
[ (
XJS − X

)2]
= 𝑝𝜎2𝑢 − (𝑝 − 2)2𝜎4𝑢

∥X𝑢 − X𝑏 ∥2
(5)

is always lower than that of X𝑢 [Green and Strawderman 1991].

Motivation. Gu et al. [2022] recently proposed NeuralJS that ap-
plies James-Stein shrinkage to combine a pair of unbiased and biased
renderings (typically the input and output of a Monte Carlo de-
noiser), which improves the error reduction rates of state-of-the-art
learning-based denoisers for many scenes. To meet the previously
listed requirements, they perform the shrinkage estimation within
local image patches with approximated homogeneous variance.

Nevertheless, the variancewithin an image patch can exhibit great
spatial variation. Consequently, an averaged patch-level shrinkage
factor is inadequate for addressing this internal variation, as demon-
strated in Fig. 2. Since the unbiased renderings (the second column)

0.0139 0.1126 0.0129 relMSE

0.0215 0.6561 0.0108 relMSE

Biased Unbiased NeuralJS Reference Unbiased Variance

Fig. 2. Influence of the assumption of homogeneous variance in NeuralJS

[Gu et al. 2022]. Note that an averaged block-wise shrinkage factor is insuf-

ficient to handle the regions with spatially varying variance.

Unbiased (PT) ∥Xu − Y∥2 (OIDN) ∥Xu − Y∥2 (SPPM) NeuralJS (OIDN) NeuralJS (SPPM)

Fig. 3. WhenX𝑢 andX𝑏 are generated by differentMC integrators, NeuralJS

[Gu et al. 2022] performs suboptimally, since the squared residual between

X𝑢 and optimized biased Y (i.e., ∥X𝑢 − Y∥2) remains high within the region

(e.g., shadow and pool edge) where the two integrators behave differently.

This decreases the shrinkage factor towards Y.

have spatially-varying variance (the last column), the shrinkage
factor 𝜆 of pixels with high variance will be underestimated since
their neighbor variances are much lower, making the noise remain
around the boundaries where the variance changes wildly.

Moreover, when the biased rendering X𝑏 is generated by an MC
integrator (e.g., stochastic progressive photon mapping [Hachisuka
and Jensen 2009] (SPPM)) that is significantly different from the MC
integrator generating X𝑢 , the high MSE and spatial variation of X𝑏

can make NeuralJS [Gu et al. 2022] suboptimal, as illustrated in Fig.
3. As seen, NeuralJS favors denoised renderings (e.g., results from
open image denoise (OIDN) [Áfra 2025]) serving as X𝑏 .
The above observations inspire us to use pixel-wise rather than

block-wise combinations like NeuralJS, for better control over the
details. Unfortunately, simply adopting pixel-wise combination in
the single shrinkage framework fails to remove residual noises, since
it can only reduce the MSE by half compared to its inputs. To address
this issue, we propose a double shrinkage method (DSCombiner)
that provides flexibility in selecting the most appropriate integrators
for various rendering scenarios.

4 DSCOMBINER

We propose our double shrinkage estimator DSCombiner that com-
bines a pair of unbiased and biased estimators generated respectively
by two different MC integrators within the screen space. For brevity,
we simplify the color estimate to a scalar in the following derivation.
The entire pipeline of our method and its comparison with NeuralJS
is shown in Fig. 4.
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Fig. 4. An overview of our pipeline, we feed the unbiased color, the MSE (i.e., variance) estimate of unbiased color, biased color, the MSE estimate of biased

color, and radiance prior to the network. The network infers a scalar 𝜂2 and two kernels used to filter the pair of MSE estimates. We also show the difference

between the previous single shrinkage estimator (James-Stein shrinkage) and our double shrinkage estimator for MC renderings.

4.1 Theoretically Optimal Double Shrinkage

Given two estimators 𝑋𝑢 and 𝑋𝑏 , our goal is to estimate the true
value𝑋 . We can construct an optimal estimator for𝑋 by maximizing
the posterior probability in a Bayesian framework, i.e.,

𝑋 = argmax
𝑋

𝑝 (𝑋 |𝑋𝑢 , 𝑋𝑏 )

= argmax
𝑋

𝑝 (𝑋𝑢 , 𝑋𝑏 |𝑋 )𝑝 (𝑋 )
𝑝 (𝑋𝑢 , 𝑋𝑏 )

= argmax
𝑋

𝑝 (𝑋𝑢 |𝑋 )𝑝 (𝑋𝑏 |𝑋 )𝑝 (𝑋 ).

(6)

In this equation, the prior distribution 𝑝 (𝑋 ) of 𝑋 is the key to re-
moving the noise in 𝑋 . We model the prior distribution of 𝑋 and 𝜉
as two normal distributions N(𝑋𝑝 , 𝜂

2) and N(0, 𝛾2), respectively.
Given the joint normal prior 𝑝 (𝑋, 𝜉) and the joint normal likeli-
hood 𝑝 (𝑋𝑢 , 𝑋𝑏 |𝑋, 𝜉), the conjugate prior property guarantees that
the posterior 𝑝 (𝑋, 𝜉 |𝑋𝑢 , 𝑋𝑏 ) is also a joint normal distribution, in-
dicating that the marginal probability distribution 𝑝 (𝑋 |𝑋𝑢 , 𝑋𝑏 ) is
a normal distribution. Then, the marginal distribution of 𝑝 (𝑋𝑏 |𝑋 )
can be derived as

𝑝 (𝑋𝑏 |𝑋 ) =
∫ ∞

−∞
𝑝 (𝑋𝑏 |𝑋, 𝜉)𝑝 (𝜉)d𝜉

= N(𝑋𝑝 , 𝜎
2
𝑏
+ 𝛾2) .

(7)

Consequently, the MAP (maximum a posteriori) estimator in Eq.
(6) can be solved by setting the derivative of 𝑝 (𝑋𝑢 |𝑋 )𝑝 (𝑋𝑏 |𝑋 )𝑝 (𝑋 )
to zero. Since the product itself is an exponential function, this is
equivalent to finding 𝑋 that makes the exponential component zero:

𝑋 − 𝑋𝑢

𝜎2𝑢
+ 𝑋 − 𝑋𝑏

𝜎2
𝑏
+ 𝛾2

+
𝑋 − 𝑋𝑝

𝜂2
= 0. (8)

Reorganize the above equation, we can write 𝑋 as

𝑋 = 𝜅2𝑋𝑝 + (1 − 𝜅2) (𝜅1𝑋𝑏 + (1 − 𝜅1)𝑋𝑢 ) , (9)

where

𝜅1 =
𝜎2𝑢

𝛾2 + 𝜎2
𝑏
+ 𝜎2𝑢

,

𝜅2 =
𝜎2𝑢 (𝛾2 + 𝜎2

𝑏
)

𝜎2𝑢 (𝛾2 + 𝜎2
𝑏
) + 𝜂2 (𝛾2 + 𝜎2

𝑏
+ 𝜎2𝑢 )

.

(10)

We refer to our combiner (i.e., Eq. (9)) as the double shrinkage
estimator because it performs shrinkage twice. Specifically, the first
shrinkage stage employs an inverse-MSE-like mechanism to com-
bine the estimates 𝑋𝑢 and 𝑋𝑏 , which efficiently mitigates fireflies
but may still suffer from low-frequency noise. Then, the second
shrinkage shrinks the first one’s result towards a prior 𝑋𝑝 with a
shrinkage factor controlled by 𝜂2. By introducing a smooth prior
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𝑋𝑝 , our combiner overcomes the drawback of single shrinkage: its
inability to remove noticeable noise when both 𝑋𝑢 and 𝑋𝑏 are noisy.
Simultaneously, the shrinkage factor 𝜂2 controls the proportion of
𝑋𝑝 in the final output, which could prevent excessive smoothing.

4.2 Radiance Prior

As we discussed earlier, the prior distribution of 𝑋 is the key to
addressing the limitations of single shrinkage. It has two param-
eters to be determined, the mean 𝑋𝑝 and the variance 𝜂2, where
𝑋𝑝 provides the smoothness and 𝜂2 will be discussed later in Sec.
4.3. We emphasize that the design of 𝑋𝑝 is different compared with
traditional MC denoising. In particular, what we need is more like
an auxiliary color buffer rather than a high-quality denoised re-
sult. This enables a design of 𝑋𝑝 that emphasizes smoothness while
relaxing constraints on detail retention.
Here we present our approach to derive the radiance prior 𝑋𝑝 .

Let 𝑋 𝑖
𝑢 , 𝑋 𝑖

𝑏
and fi be the unbiased color, biased color and feature

vector (i.e., G-Buffers) of pixel 𝑖 , we approximate the radiance prior
with a first-order linear model within a local block Ω𝑖 (with size
51 × 51) centered on pixel 𝑖 . This implies a regression:

[𝛼𝑖 , 𝛽𝑖 ] = argmin
𝛼𝑖 ,𝛽𝑖

∑︁
𝑗∈Ω𝑖

𝑤
𝑖, 𝑗
𝑢 L(𝑋 𝑗

𝑢 , 𝛼𝑖 + 𝛽𝑖 (f𝑗 − f𝑖 ))+

𝑤
𝑖, 𝑗

𝑏
L(𝑋 𝑗

𝑏
, 𝛼𝑖 + 𝛽𝑖 (f𝑗 − f𝑖 )),

(11)

where L is L2 norm, 𝛼𝑖 and 𝛽𝑖 are the parameters of a first-order
linear function..𝑤𝑖, 𝑗

𝑢 and𝑤𝑖, 𝑗

𝑏
are the weights:

𝑤
𝑖, 𝑗
𝑢 = exp

©­­«−
���𝑋 𝑖

𝑏
− 𝑋

𝑗

𝑏

���2
𝜎2
𝑏,𝑖

+ 𝜎2
𝑏,𝑗

+ 𝜖1

ª®®¬,𝑤
𝑖, 𝑗

𝑏
= exp

©­­«−
���𝑋 𝑖

𝑢 − 𝑋
𝑗
𝑢

���2
𝜎2
𝑢,𝑖

+ 𝜎2
𝑢,𝑗

+ 𝜖1

ª®®¬.(12)
The regression of Eq. (11) can be solved through the least squares,

which implies

argmin
X

∥AuX − Yu∥2 + ∥AbX − Yb∥2, (13)

where each matrix is

A∗ =


√︃
𝑤
𝑖,1
∗ [1, f1 − f𝑖 ]

.

.

.√︃
𝑤
𝑖,𝑛
∗ [1, f𝑛 − f𝑖 ]


, X =

[
𝛼𝑖 , 𝛽𝑖

]⊤
, Y∗ =


√︃
𝑤
𝑖,1
∗ 𝑋 1

∗
.
.
.√︃

𝑤
𝑖,𝑛
∗ 𝑋𝑛

∗


(14)

and 𝑛 is the number of pixels within Ω𝑖 , ∗ represents 𝑢 or 𝑏.
We can rewrite the residual error as a function of X

𝐸 (X) =(AuX − Yu)⊤ (AuX − Yu)+
(AbX − Yb)⊤ (AbX − Yb)

(15)

To minimize 𝐸 (X), we set the derivative of 𝐸 with respect to X
equal to zero, that is equivalent to

2A⊤
uAuX − 2A⊤

u Yu + 2A⊤
b AbX − 2A⊤

b Yb = 0
(A⊤

uAu + A⊤
b Ab)X = A⊤

u Yu + A⊤
b Yb

X = (A⊤
uAu + A⊤

b Ab)−1 (A⊤
u Yu + A⊤

b Yb)
(16)

Thus, the inverse matrix of A⊤
uAu + A⊤

b Ab is the only thing left un-
known. We use Cholesky decomposition to solve a lower triangular

Biased Optimized Biased Ours Prior Reference

Fig. 5. Comparison between optimized biased rendering in [Gu et al. 2022]

with our radiance prior. Our radiance prior effectively eliminates the artifacts

introduced by biased rendering methods, such as SPPM, whose results are

far from converged.

matrix L that satisfies LL⊤ = A⊤
uAu + A⊤

b Ab. We add an epsilon to
each element on the diagonal of the matrix to guarantee its positive
definiteness. Then the inverse matrix can be easily obtained through
L.
After solving the above regression, we reconstruct the radiance

prior through

𝑋 𝑖
𝑝 =

∑︁
𝑗∈Ω𝑖

𝑤𝑖, 𝑗 (𝛼 𝑗 + 𝛽 𝑗 (f𝑗 − f𝑖 )),

𝑤𝑖, 𝑗 = exp
©­­«−

���𝑋 𝑖
𝑏
− 𝑋

𝑗

𝑏

���2 − (𝜎2
𝑏,𝑖

+ 𝜎2
𝑏,𝑗

)

𝜎2
𝑏,𝑖

+ 𝜎2
𝑏,𝑗

+ 𝜖1

ª®®¬ .
(17)

We set 𝜖1 = 0.01 to avoid dividing by zero. It has been shown that
our regression produces a smoother color buffer compared to the
optimized biased rendering proposed by Gu et al. [2022], as shown
in Fig. 5.

By design, 𝑋𝑝 is oversmoothed, resulting in detail loss. Hence, a
second shrinkage operation is employed to restore missing details
while minimizing the resurgence of noise. This is achieved by as-
signing a confidence level to 𝑋𝑝 , denoted as 𝜂2 in our framework. A
smaller 𝜂2 indicates a higher confidence of 𝑋𝑝 as the designed true
value, effectively serving as a regularization term that balances the
trade-off between detail preservation and noise suppression.

4.3 Data-driven Shrinkage Factors

To combine the radiance prior buffer with unbiased and biased
renderings, we need to determine 𝜂2 for each pixel. Note that 𝜂2
is highly correlated with the regressed 𝑋𝑝 . Therefore, rather than
analyzing the variance reduction and bias introduction caused by
regression, we adopt a Convolutional Neural Network (CNN) to
predict 𝜂2. We visualize the predicted 𝜂2 in Fig. 6.

Network architecture. As illustrated in Fig. 7, we employ a U-Net
as the backbone, with each layer comprising a 3×3 convolution and a
ReLU activation function, followed by a simple projection layer (i.e.,
1 × 1 convolutional layer). The network takes as input the radiance
prior buffer and the pair of unbiased and biased renderings, along
with their MSE estimates (averaged over RGB channels). For the
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Prior DSCombiner η2 Reference

Fig. 6. Results of predicted 𝜂2. Our specially designed neural network iden-

tifies regions that are not well handled by the radiance prior (typically

indicating an overblurred radiance prior in these areas). It assigns a higher

𝜂2 to these pixels and recovers details based on the original unbiased and

biased inputs.

output, our model predicts 339 parameters per pixel: two 13×13 filter
kernels (normalized by Softmax) for filtering the biased/unbiased
MSE, and the exponential of a predicted scalar parameter as 𝜂2 to
ensure positivity. Finally, we use the predicted 𝜂2 and the pair of
filtered MSE estimates to compute the shrinkage factors (Eq. 10).

Loss functions. We employ supervised learning to optimize our
model, using SMAPE [Vogels et al. 2018] as our loss function:

L(D,R) = 1
3𝑁

∑︁
𝑖

∑︁
𝑐

|D𝑐
𝑖
− R𝑐

𝑖
|

|D𝑐
𝑖
| + |R𝑐

𝑖
| + 𝜖2

, (18)

whereD is the result image of ourDSCombiner and R is the reference
image. Here, 𝑁 is the total number of pixels, 𝑖 and 𝑐 represent each
pixel and each color channel, respectively. In order to avoid division
by zero, we set 𝜖2 to 0.001.

Data generation. We generate a data set containing 2548 pairs of
images across 20 different scenes (a selection of which are shown in
Fig. 8), each with a resolution of 512 × 512 rendered by the Mitsuba
renderer [Jakob 2010]. In our experiments, unbiased images are
rendered by path tracing (PT), and biased images are rendered by
SPPM. We use bidirectional path tracing (BDPT) to generate the
reference image at high sample rates. The total rendering time for
a pair of unbiased and biased images varies from 20 seconds to 10
minutes.

Training. We reserve 10% of the data for validation and use the
remaining for training. The model was trained for 2,000 epochs
using the Adam optimizer [Kingma and Ba 2017] with a learning
rate of 10−4 and a batch size of 10. At each iteration, we randomly
crop a 128 × 128 patch from the input images. Consequently, it took
about a day for training. The entire framework is implemented in
PyTorch [Paszke et al. 2019].

4.4 Variance and Bias Estimation

As aforementioned, we need to estimate the MSE for the pair of
biased and unbiased renderings. For an unbiased integrator, the
variance 𝜎2𝑢 of pixel’s intensity 𝑋𝑢 can be estimated through sample

variance. For biased ones, several works [Hachisuka et al. 2010;
Nabata et al. 2016; Schwarzhaupt et al. 2012] have developed er-
ror estimation frameworks for some specific integrators, thereby
allowing us to obtain the bias and variance for each pixel directly.
In particular, since we employ SPPM in our experiments, we use
the method in [Hachisuka et al. 2010] for the MSE estimation of
biased renderings. Furthermore, we follow the procedure detailed
in related works [Gu et al. 2022], which involves filtering the error
estimates to refine our MSE calculations.

5 RESULTS AND DISCUSSIONS

Weperform experiments on a PCwith an Intel i7-13700KCPU and an
NVIDIA RTX 3080 Ti GPU. We use Mitsuba renderer [Jakob 2010] to
generate all images with a default resolution of 1280×720. We didn’t
include the execution time of post-processing in our experiments
for all methods since we found it is relatively small (less than 5%)
compared to the rendering time.

Visualization of the relative weight. We show the relative weight
of the radiance prior and inverse-MSE combiner in Fig. 9. In this vi-
sualization, red represents a higher proportion of the radiance prior,
while blue shows the opposite. The experimental results demon-
strate that our method effectively preserves details in the inverse-
MSE combiner while successfully suppressing residual noise.

Comparisons with screen-space combination. We compare our
method with DeepCombiner [Back et al. 2020] and NeuralJS [Gu
et al. 2022], using their released pre-trained models in Fig. 10. We
allocate approximately equal runtime to each integrator for gen-
erating input images. We analyze the numerical convergence of
each method, with rendering time varying from 20 seconds to 2,560
seconds. Our experiments are conducted on four scenes with chal-
lenging lighting conditions, each containing distinct areas where
different integrators could demonstrate their strengths. As seen,
DeepCombiner efficiently mitigates the correlated low-frequency
noise (e.g., in Bookshelf) but struggles to retain the details (e.g.,
caustics in Swimming Pool). While NeuralJS succeeds in preserving
high-frequency details, it tends to reintroduce noticeable noise in
regions with wildly varied variance. Our DSCombiner surpasses
both methods in terms of numerical metrics and visual quality. Fur-
ther, we also retrained NeuralJS [Gu et al. 2022] using our dataset
for a fairer comparison, which takes about a day for training. We
find the re-trained NeuralJS behaves sub-optimally compared to the
model released by Gu et al. [2022] in low SPP settings. This could be
attributed to the stronger noise present in our dataset’s images (espe-
cially the biased rendering), which hinders the model’s convergence
during training. As the sampling rate increased, the performance
of the re-trained model became essentially consistent with that of
the pre-trained model. This demonstrates that our dataset is not the
key factor contributing to DSCombiner’s improved performance.

Comparisons with path-space combination. We compare DSCom-
biner (BDPT+SPPM) with the prevailing path-space combination
method: vertex connection and merging (VCM) [Georgiev et al.
2012] in Fig. 11. Here, we use the VCM implementation released by
[Sun et al. 2017]. Experimental results demonstrate that our method
not only provides a more flexible combination framework but also
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Fig. 7. The architecture of our neural network. We use a U-Net with a projection layer [Thomas et al. 2022] to predict the parameters. The predicted parameters

can be split into two parts: two filtering kernels for the pair of MSE estimates of biased and unbiased color, and a scalar serving as 𝜂2. Then, we use the output
to perform double shrinkage.

Fig. 8. Some example scenes in our dataset.

Radiance Prior Inverse-MSE Combined DSCombiner Relative Weight

Fig. 9. Relative weight of radiance prior and inverse-MSE combiner in the

final result, red represents a higher proportion of the radiance prior and

blue shows the opposite.

significantly enhances numerical accuracy by avoiding expensive
computations in path space.

Comparisons with NeuralJS with single integrator. Since NeuralJS
is originally designed for an unbiased integrator with a denoiser, we
compare our method with NeuralJS in a single integrator setting. We

select OIDN [Áfra 2025] as the denoiser and provide the auxiliary G-
Buffers to generate the biased renderings. Equal-time comparisons
in Fig. 12 show that although our method achieves only marginal
advantages in numerical metrics, we can better capture the details
that are challenging for the denoiser to reconstruct (e.g., caustics in
Torus and shadows in Spotlight). Moreover, NeuralJS still strug-
gles in regions where the homogeneous variance assumption does
not hold (e.g., line-shaped highlight in Torus), while our approach
achieves better noise reduction in these areas.

Comparisons between different biased renderings. We also use
OIDN [Áfra 2025] to generate biased renderings for DSCombiner.
We use dual-buffer [Bitterli et al. 2016] to estimate the MSE of bi-
ased renderings (the time of generating the additional buffer is not
included). The comparisons are shown in Fig. 13, which shows that
our DSCombiner is more effective in handling biased renderings
generated by SPPM. Since DSCombiner primarily acquires smooth-
ness from the radiance prior, we hope that biased rendering can
provide some details that unbiased rendering cannot produce, so
we suggest using an integrator rather than a denoiser to generate
biased renderings.

Ablation studies. To analyze the improvement brought by each of
the two designs (i.e., radiance prior and DSCombiner) separately,
in Fig. 14, we show the improvement by replacing the optimized
bias rendering used by Gu et al. [2022] with our radiance prior. For
these two distinct types of priors, we train separate models, ensur-
ing identical training configurations for both. The results validate
that our radiance prior significantly reduces the noise pattern intro-
duced by biased rendering (e.g., the correlated noise on the white
tissue in Still Life and low-frequency noise on radio in Kitchen).
Additionally, in Fig. 15, we compare NeuralJS with our method
using optimized biased rendering as the radiance prior. Here, the
pixel-level shrinkage control makes our combiner more robust in
recovering details, reintroducing considerably less noise compared
to NeuralJS.
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SPOTLIGHT
PT

0.487933 (0.0x)
SPPM

0.020268 (0.4x)
DeepCombiner
0.019855 (0.4x)

NeuralJS
0.008053 (base)

Ours
0.003887 (2.1x)

Reference
relMSE (160s)

KITCHEN
PT

0.005490 (0.1x)
SPPM

0.002616 (0.2x)
DeepCombiner
0.000469 (1.3x)

NeuralJS
0.000629 (base)

Ours
0.000417 (1.5x)

Reference
relMSE (1280s)

SWIMMING POOL
PT

0.179365 (0.0x)
SPPM

0.404343 (0.0x)
DeepCombiner
0.018652 (0.3x)

NeuralJS
0.004780 (base)

Ours
0.002991 (1.6x)

Reference
relMSE (320s)

BOOKSHELF
PT

0.069121 (0.0x)
SPPM

0.015005 (0.1x)
DeepCombiner
0.002655 (0.7x)

NeuralJS
0.001856 (base)

Ours
0.001245 (1.5x)

Reference
relMSE (160s)

Fig. 10. Equal-time comparisons between our DSCombiner with DeepCombiner [Back et al. 2020] and NeuralJS [Gu et al. 2022]. The unbiased and biased

inputs are rendered by PT and SPPM, respectively, with roughly the same time budget. Convergences of re-trained NeuralJS indicate that our dataset provides

slight improvements at high sampling rates; however, it’s not the key factor why DSCombiner performs better.

6 DISCUSSIONS AND LIMITATIONS

Reintroduced noise. Our method recovers the details by combin-
ing the smooth radiance prior with unbiased and biased rendering
inputs, which may reintroduce some noise as shown in Fig. 16.
Specifically, the reintroduced noise can be either high-frequency
or low-frequency. To alleviate such issues, one can enhance the
quality by applying a multi-level combination [Balint et al. 2023;

Boughida and Boubekeur 2017] for reducing low-frequency noise
and a dual-buffer combination [Bitterli et al. 2016; Gu et al. 2022]
for reducing high-frequency noise.

Budget allocation between integrators. In our current implemen-
tation, we set an equal time budget for two integrators in our ex-
periments. Nonetheless, one can allocate different budgets between
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SWIMMING POOL
BDPT

0.050852 (0.1x)
SPPM

0.050882 (0.1x)
VCM

0.007246 (base)
Ours

0.001489 (4.9x)
Reference

relMSE (2560s)

DINING ROOM
BDPT

0.000549 (7.4x)
SPPM

0.014474 (0.3x)
VCM

0.004044 (base)
Ours

0.000332 (12.2x)
Reference

relMSE (640s)

Fig. 11. Comparisons between path-space combination (i.e., VCM [Georgiev et al. 2012]) and our DSCombiner (BDPT+SPPM).

TORUS (320s) NeuralJS (PT + OIDN) Ours (PT + SPPM) Reference

0.00022 0.00020 relMSE
SPOTLIGHT (1280s) NeuralJS (PT + OIDN) Ours (PT + SPPM) Reference

0.00219 0.00208 relMSE

Fig. 12. Equal-time comparisons between NeuralJS (PT+OIDN) and ours

(PT+SPPM). For the regions that can’t be well handled by unbiased ren-

dering (i.e., caustics and shadows), DSCombiner still outperforms NeuralJS

equipped with a powerful denoiser (OIDN).

SPOTLIGHT (640s) Ours (PT + OIDN) Ours (PT + SPPM) Reference

0.00291 0.00229 relMSE
TORUS (640s) Ours (PT + OIDN) Ours (PT + SPPM) Reference

0.00022 0.00016 relMSE

Fig. 13. Equal-time comparisons between using different biased renderings

(i.e., OIDN and SPPM) in our DSCombiner. The result shows that a biased

integrator can provide more details than a denoiser in some specific regions.

integrators or even pixels. For example, adaptive sample alloca-
tion could further enhance our method’s performance by assigning
more samples to each integrator in its regions of expertise, thereby
avoiding computational waste on ineffective sampling.

Prior distribution. We select the normal distribution as the prior,
and other distributions [Salehi et al. 2022] can also be considered.
Besides, the radiance prior can be obtained through alternative ways.
For instance, without requiring reference data, an unsupervised
learning approach can be employed to train a neural network for
predicting radiance prior. We believe that carefully designing self-
supervised loss and enabling the neural network to predict higher-
quality radiance prior is a good avenue for further exploration.

7 CONCLUSION

In this paper, we have presented a new combination framework for
combining biased and unbiased renderings generated by two differ-
ent integrators. We formulate the combination task as a Bayesian
inference problem and design a simple yet effective radiance prior.
The shrinkage factors are inferred using a data-driven approach,
leveraging a neural network to evaluate the confidence of the ra-
diance prior. This confidence evaluation controls the proportion
of the radiance prior in the final combination results. Experiments
show that our method achieves superior error reduction in our test
scenes compared to existing methods.

We believe the double shrinkage estimator advances the state of
the art in Monte Carlo rendering by providing a more efficient and
effective way to balance the trade-off between bias and variance,
ultimately leading to higher quality renderings in less time.
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STILL LIFE (160s)

0.00089 0.00084 relMSE

0.00060 0.00054 relMSE

w/o prior w/ prior Reference KITCHEN (640s)

Fig. 14. Ablation studies using different radiance priors (i.e., optimized biased rendering proposed by Gu et al. [2022] and ours) in our pipeline. The unbiased

and biased inputs are rendered by PT and SPPM, respectively. Ours radiance prior eliminates the noise pattern introduced by biased rendering.

BOOKSHELF (1280s)

0.00064 0.00055 relMSE

0.00036 0.00028 relMSE

NeuralJS DSCombiner Reference DINING ROOM (1280s)

Fig. 15. Ablation studies using different combiners (i.e., NeuralJS and our proposed DSCombiner). We replace our radiance prior with optimized biased

rendering used by NeuralJS. The unbiased and biased inputs are rendered by PT and SPPM, respectively. Results show that DSCombiner itself still outperforms

NeuralJS.

Unbiased Biased Prior DSCombiner Reference

Fig. 16. Examples of our method’s limitation. The result shows that our

combiner may reintroduce the noise (both low-frequency noise and fireflies).
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