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Fig. 1. Reconstructing the normal map of the water surface (roughness 𝛼 = 0.1) from the caustics, using our physically based differentiable rendering pipeline.
Given target images and initial scene parameters, existing methods (e.g., PRB [Vicini et al. 2021]) fail due to the challenging specular-diffuse-specular (SDS)
paths in the scene, while our method works well. The last column shows the evolution of the parameter loss with respect to the optimization iteration.

The efficiency of inverse optimization in physically based differentiable
rendering heavily depends on the variance of Monte Carlo estimation. De-
spite recent advancements emphasizing the necessity of tailored differential
sampling strategies, the general approaches remain unexplored.

In this paper, we investigate the interplay between local sampling deci-
sions and the estimation of light path derivatives. Considering that modern
differentiable rendering algorithms share the same path for estimating dif-
ferential radiance and ordinary radiance, we demonstrate that conventional
guiding approaches, conditioned solely on the last vertex, cannot attain this
density. Instead, a mixture of different sampling distributions is required,
where the weights are conditioned on all the previously sampled vertices in
the path. To embody our theory, we implement a conditional mixture path
guiding that explicitly computes optimal weights on the fly. Furthermore, we
show how to perform positivization to eliminate sign variance and extend
to scenes with millions of parameters.

To the best of our knowledge, this is the first generic framework for apply-
ing path guiding to differentiable rendering. Extensive experiments demon-
strate that our method achieves nearly one order of magnitude improvements
over state-of-the-art methods in terms of variance reduction in gradient
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estimation and errors of inverse optimization. The implementation of our pro-
posed method is available at https://github.com/mollnn/conditional-mixture.
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1 INTRODUCTION
Inverse rendering based on physically based differentiable rendering
(PBDR) [Li 2022; Zhao et al. 2020] formulates the inversion process
as an optimization loop which involves gradient-descent on a high-
dimensional domain with millions of scene parameters [Jakob et al.
2022]. The differentiable renderer provides estimations of gradients
while handling intricate interactions via stochastic sampling.

Even though modern optimizers are theoretically able to deal with
noisy gradients, the quality of Monte Carlo estimations, including
the variance and bias of both primal and adjoint renderings, decides
the overall efficacy of the optimization. In the worst-case scenario,
images with excessive noise will cause the optimization process to
diverge [Nimier-David et al. 2022; Vicini et al. 2021; Zhang et al.
2023]. The problem becomes more severe with the fact that only a
small amount of samples per pixel (typically 4-32) [Belhe et al. 2024;
Nicolet et al. 2023] are used in each optimization step. Therefore,
variance reduction is necessary to accelerate the inversion process
and ensure convergence.

Recently, differential counterparts of numerous variance reduc-
tion techniques have been adapted into PBDR frameworks. For
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instance, the sampling of bidirectional scattering distribution func-
tion (BSDF) derivatives can be improved using antithetic sampling
[Zeltner et al. 2021; Zhang et al. 2021a] and positivization [Belhe
et al. 2024; Owen and Zhou 2000]. Special strategies have also been
developed to handle geometric continuities, by using control vari-
ates [Bangaru et al. 2020; Loubet et al. 2019], path space guiding
[Zhang et al. 2020], primary sample space guiding [Yan et al. 2022],
or sample reuse [Chang et al. 2023; Wang et al. 2023]. Neverthe-
less, to our knowledge, the differential sampling strategy [Zeltner
et al. 2021] of differential radiance for material parameters that
completely handles global illumination remains a clear gap.

In this work, we propose a generic framework for applying path
guiding to differentiable rendering. A crucial challenge is that the
estimation of differential radiance requires an embedded estimation
of ordinary radiance, which is now resolved using the same path
[Vicini et al. 2021; Zhang et al. 2020]. To overcome this issue, we
propose a mixture guiding scheme that employs two separated
spatial-directional distributions to fit the primal and differential
integrands. We show that the choice of the mixture weights has a
great impact on the noise level of estimated derivatives. This inspires
us to develop conditional mixture importance sampling, which uses
adaptive mixture weights conditioned on the previously sampled
vertices in the path. Since gradients can be real-valued vectors, we
further employ positivization to eliminate sign variance and use 𝐿1
norm to support multiple parameters.

Through these, we construct a practical pipeline that sufficiently
exploits spatial and temporal coherence across simulated light path
samples in inverse rendering. We evaluate our pipeline in a variety
of challenging scenarios, including derivative estimation and in-
verse reconstruction. Both qualitative and quantitative comparisons
demonstrate that our approach serves as a substantial advance-
ment in noise reduction for differentiable rendering in terms of
the variance of parameter gradients and the acceleration of inverse
optimization.

In summary, our main contributions in this paper are:

• A mixture importance sampling method for estimating deriva-
tives to material parameters, considering the same path is
used for estimating differential and ordinary radiance.
• An optimal choice of conditional mixture weights for local

directional sampling, combined with positivization to handle
real-valued gradients.
• An efficient differentiable rendering pipeline that enables effi-

cient material reconstructions in scenes with strong indirect
illumination, caustics, and complex visibility.

2 RELATED WORKS
Physically based differentiable rendering. Recent interest in Monte

Carlo differentiable rendering [Kato et al. 2020; Li 2022; Zhao et al.
2020] begins with [Li et al. 2018], which paves the way for handling
global illumination [Zhang et al. 2019] within a general-proposed
path tracing [Kajiya 1986; Veach 1997] framework.

Follow-up works propose efficient and accurate techniques for
estimating the boundary integral through explicit edge sampling
[Yan et al. 2022; Zhang et al. 2020], analytical visibility [Zhou et al.
2021], reparameterization [Loubet et al. 2019], and warped-area

sampling [Bangaru et al. 2020]. Implicit geometric representations
[Bangaru et al. 2022; Vicini et al. 2022] and volumetric radiative
transfer [Nimier-David et al. 2022; Zhang et al. 2021b] are also ef-
fectively supported. Meanwhile, other works proposed practical
algorithmic frameworks [Nimier-David et al. 2020] using constant
memory and linear time [Vicini et al. 2021], as well as automatic
differentiation systems and compilers [Jakob et al. 2022; Nimier-
David et al. 2019]. All of these advancements have resulted in the
widespread adoption of physically based differentiable rendering in
numerous inverse rendering applications [Azinovic et al. 2019; Luan
et al. 2021; Zhu et al. 2022] handling various light transport phenom-
ena. Our method is largely agnostic to the underlying algorithm
and application, which is compatible or orthogonal to most of the
existing techniques and strategies [Bangaru et al. 2020; Belhe et al.
2024; Chang et al. 2023; Loubet et al. 2019; Nicolet et al. 2023; Vicini
et al. 2022; Zeltner et al. 2021]. In our validations, we demonstrate
higher-quality gradient estimations and faster optimization when
applying our method to Path Replay Backpropagation (PRB) [Jakob
et al. 2022; Vicini et al. 2021].

Sampling strategies for differentiable rendering. The efficiency of
Monte Carlo differentiable rendering is highly dependent on the
design of sampling strategies. Yet, sampling strategies designed for
primal integrand may no longer work when sampling derivatives,
necessitating the development of customized differential sampling
strategies for variance reduction [Zeltner et al. 2021].

Early attempts applied antithetic sampling to differential BSDF
sampling [Zeltner et al. 2021; Zhang et al. 2021a] leveraging the
symmetry of derivatives. This is also claimed as a special case of
positivization [Belhe et al. 2024; Owen and Zhou 2000]. However,
these methods do not take the incident radiance fields into account.

In contrast to the analytical ones, another line of work bene-
fits from historical samples. Recently, Chang et al. [2023] utilized
positivized ReSTIR [Bitterli et al. 2020] to efficiently sample the dif-
ferential radiance with respect to material parameters, which takes
both the incident radiance and BSDF derivatives into account. Wang
et al. [2023] applied ReSTIR to differentiable rendering for both ma-
terial and geometric parameters. However, both of these methods
only consider direct lighting. Concurrent to our work, Balint et al.
[2023] propose a meta-estimator that combines proportional and
finite-difference estimations to efficiently reuse past samples, which
is largely agnostic to our importance sampling strategy.

Besides, specific variance reduction techniques have also been
used in handling geometric discontinuities [Bangaru et al. 2020; Li
et al. 2018; Loubet et al. 2019; Yan et al. 2022].

Our work is the first to concentrate on differential sampling strat-
egy for material parameters under global illumination. To ensure
robustness and adaptability, we leverage the strong capability of
path guiding. This is especially advantageous in scenes involving
substantial correlation, such as those with strong indirect illumina-
tion, glossy interreflection, and complex visibility.

Path guiding. Monte Carlo rendering techniques rely heavily on
importance sampling when constructing light transport paths, and
the most promising sampling distributions for forward rendering
are obtained through learning scene priors. Existing methods use
different distribution representations, such as Gaussian Mixture
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Models (GMM) [Vorba et al. 2014] and quad-trees [Müller et al.
2017]. Some approaches further reduce the variance by considering
the correlation between consecutive vertices [Dodik et al. 2022;
Dong et al. 2023; Herholz et al. 2016; Müller et al. 2019; Ruppert et al.
2020; Schüßler et al. 2022] or directly employing high-dimensional
structures [Guo et al. 2018; Reibold et al. 2018; Zheng and Zwicker
2019]. Besides, guiding samples towards the high-variance regions
also benefits some challenging scenes [Rath et al. 2020].

For differentiable rendering, existing works only handle the guided
sampling for estimating geometric derivatives in path space differ-
entiable rendering [Yan et al. 2022; Zhang et al. 2020], while the
material derivatives are largely under-explored. Developing a guid-
ing method for derivatives with respect to material parameters is
a non-trivial task. Specifically, since a single path is used for both
ordinary and differential radiance estimation, new challenges arise
in several aspects, both theoretical and algorithmic. Our work is the
first attempt to fill this gap, proposing theoretical analysis along
with a practical pipeline.

Importance sampling for gradient-based optimization. The use of
importance sampling has become crucial in gradient-based optimiza-
tion algorithms. Among different approaches, adaptive importance
sampling methods periodically re-evaluate the importance during
training and thereby often surpass the static ones. A widely adopted
target is to minimize the expected squared 𝐿2 norm of gradient
estimations, which can be achieved by using a proposal distribution
proportional to the 𝐿2 norm of gradient [Hanchi and Stephens 2021;
Stich et al. 2017; Zhu 2016].

Specifically designed for light transport simulation, path guiding
follows the principle of adaptive importance sampling. Our method
also uses the 𝐿1 norm to compute the importance weight of each
sample from their gradient estimation.

3 BACKGROUND
The intricate interplay between the convergence rate of inverse
optimization techniques and the variance of Monte Carlo estima-
tions has undergone extensive exploration within the realms of
optimization and machine learning. While importance sampling, as
an essential variance reduction technique, finds widespread utility
in conventional forward rendering [Kondapaneni et al. 2019] and re-
inforcement learning [Llorente et al. 2021], its nuanced application
to differentiable rendering necessitates special considerations.

Importance sampling. Consider the definite integral of a function
𝑓 over some domain Ω and its 𝑁 -sample Monte Carlo estimator ⟨𝐼 ⟩:

⟨𝐼 ⟩ =
〈∫

Ω
𝑓 (𝑥) d𝑥

〉
=

1
𝑁

𝑁∑︁
𝑗=1

𝑓 (𝑋 𝑗 )
𝑝 (𝑋 𝑗 ) , (1)

where 𝑁 denotes the number of samples, and 𝑝 (𝑥) is the sampling
probability density function (PDF). The variance of ⟨𝐼 ⟩ heavily de-
pends on the PDF 𝑝 (𝑥). Conventionally, the variance tends to be
small, when 𝑝 (𝑥) is approximately proportional to the integrand
𝑓 (𝑥). If 𝑝 (𝑥) ∝ 𝑓 (𝑥), the estimation will reach zero variance.

Differentiable rendering. Recent practical physically based differ-
entiable rendering (PBDR) algorithms are mostly built on solving
the recursive integral equation on the local directional space S2 at

all shading points in the scene, resulting in the following differential
rendering equation [Nimier-David et al. 2020; Vicini et al. 2021]:

𝜕𝜋𝐿𝑜 (𝒙,𝝎𝑜 ) = 𝜕𝜋𝐿𝑒 (𝒙,𝝎𝑜 )+∫
S2
(𝑓𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )𝜕𝜋𝐿𝑖 (𝒙,𝝎𝑖 ) + 𝜕𝜋 𝑓𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )𝐿𝑖 (𝒙,𝝎𝑖 )) d𝝎⊥𝑖 ,

(2)
where 𝜋 denotes a set of scene parameters (e.g., optical properties),
and 𝜕𝜋 := 𝜕/𝜕𝜋 . Here, we initially assume 𝜋 only involves mate-
rial parameters. 𝐿𝑜 , 𝐿𝑖 , and 𝐿𝑒 refer to the outgoing, incident, and
emitted radiance at a shading point 𝒙 . 𝑓𝑠 is the bidirectional scat-
tering distribution function (BSDF), parameterized by the incident
direction 𝝎𝑖 , the outgoing direction 𝝎𝑜 , and the position of the shad-
ing point 𝒙 . The above equation states that the target differential
outgoing radiance 𝜕𝜋𝐿𝑜 involves three parts:

(1) Differential radiance that is emitted from light sources whose
primal emission depends on 𝜋 ,

(2) Differential radiance that scatters like ordinary radiance, con-
forming to the principles of the BSDF,

(3) Differential radiance that is also added on the shading point
𝒙 whose BSDF depends on 𝜋 .

Like that in conventional forward rendering, solving the above
differential rendering equation in the context of Monte Carlo re-
quires importance sampling of light paths to reduce the variance.
For forward rendering, we generally guide the sampling according
to incident radiance fields and BSDFs. However, for differentiable
rendering, we must consider them and their differential counterparts
simultaneously. Furthermore, the estimation of differential radiance
requires an embedded estimation of ordinary radiance, which is
now resolved using the same path [Vicini et al. 2021; Zhang et al.
2020]. This poses a new challenge for finding proper sampling PDFs
to satisfy all integrals in PBDR. In this paper, we propose a general
solution for importance sampling light paths for the differential
rendering equation, focusing on the derivatives with respect to the
material parameters.

4 IMPORTANCE SAMPLING PATH DERIVATIVES
We first theoretically analyze the importance sampling issues in the
context of PBDR. Then, we design conditional mixture importance
sampling that is able to satisfy all integrals in PBDR.

4.1 Motivation
To sample light paths for derivative estimation, prior works mostly
use standard BSDF sampling [Vicini et al. 2021; Zhang et al. 2020], or
design special tools for sampling the BSDF derivatives [Belhe et al.
2024; Zeltner et al. 2021; Zhang et al. 2021a], paying little attention
to the incident radiance field, even when combined with direct light
sampling strategies like next event estimation (NEE).

Recently, Chang et al. [2023] utilized positivized ReSTIR [Bitterli
et al. 2020] to efficiently sample the differential emittance term,
which for the first time takes both incident radiance fields and BSDF
derivatives into account. However, they only handled direct lighting,
due to the limitation of ReSTIR.
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Fig. 2. Derivatives with respect to the bunny’s reflectence under different
weights in Eq. (5). Sampling paths using only 𝑝𝐿 or 𝑝𝐷 results in high
variance. The relative mean squared error (rMSE) metric clearly shows the
benefit of employing a mixture distribution of 𝑝𝐿 and 𝑝𝐷 .

In the context of forward rendering, to ensure low variance, esti-
mating ordinary radiance requires sampling directions with proba-
bility density proportional to the integrand of the rendering equa-
tion, i.e.,

𝑝𝐿 (𝝎𝑖 |𝒙,𝝎𝑜 ) ∝ 𝑓𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )𝐿𝑖 (𝒙,𝝎𝑖 ) . (3)
However, the optimal sampling PDF for estimating the integral of
the differential rendering equation is expected to satisfy:

𝑝𝐷 (𝝎𝑖 |𝒙,𝝎𝑜 ) ∝ 𝑓𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )𝜕𝜋𝐿𝑖 (𝒙,𝝎𝑖 )+𝜕𝜋 𝑓𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )𝐿𝑖 (𝒙,𝝎𝑖 ) .
(4)

Modern PBDR algorithms use two separated passes for primal
rendering and adjoint rendering to mitigate correlation and ensure
unbiasedness [Nimier-David et al. 2020]. Thus, for primal renderings,
light paths can be importance sampled using 𝑝𝐿 defined in Eq. (3).

However, in the adjoint rendering pass, 𝑝𝐷 does not always
achieve the goal of importance sampling. This is because the estima-
tion of differential radiance in Eq. (2) requires a recursive estimation
of the ordinary radiance1, and to significantly lower the cost in
terms of memory and computation time, most recent PBDR meth-
ods share the same set of path samples when estimating the ordinary
radiance and the differential radiance [Vicini et al. 2021; Zhang et al.
2020]. Since a path is used to estimate two different quantities, using
only 𝑝𝐿 or 𝑝𝐷 to sample paths will cause extremely high variance
in some cases for estimating the differential or ordinary radiance,
resulting in severe noise. To address this issue, a straightforward
solution is to use a mixture of the above two distributions.

4.2 Mixture sampling
For differentiable rendering, the mixture sampling PDF takes the
form of
𝑝𝑀 (𝝎𝑖 |𝒙,𝝎𝑜 ) ∝ 𝑤𝐿 𝑓𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )𝐿𝑖 (𝒙,𝝎𝑖 )+

𝑤𝐷 (𝑓𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )𝜕𝜋𝐿𝑖 (𝒙,𝝎𝑖 ) + 𝜕𝜋 𝑓𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )𝐿𝑖 (𝒙,𝝎𝑖 )) .
(5)

with𝑤𝐿 and𝑤𝐷 being the weights of the components. When setting
the weights to fixed values (e.g.,𝑤𝐿 = 𝑤𝐷 = 0.5), we get one-sample
Multiple Importance Sampling (MIS). Fig. 2 shows the benefits of
using a mixture distribution on a typical scene involving strong
indirect illumination. The comparisons show that such a simple
mixture model can already reduce the variance of derivatives.

While pragmatic, this simple mixture sampling algorithm with
fixed weights is suboptimal for differentiable rendering. Distinct
vertices along diverse paths may require different optimal values
1 Here, the ordinary radiance estimation is only used to estimate the differential radiance,
which is different from the ordinary radiance estimations in the primal rendering pass.

Fig. 3. Visualization of our optimal weights on the first and second bounce
of each path. The derivatives are with respect to the reflectance of the two
bowls. For the first bounce, we always sample 𝑝𝐷 since 𝑤𝐿

1 = 0, as sampling
𝑝𝐿 could introduce path samples that never hit the bowl and have a zero
contribution to gradients. The cyan path hits the target bowl on the first
bounce, so when sampling the incident direction on the second bounce
according to 𝑝𝐿 , this path could have a non-zero gradient contribution,
hence 𝑤𝐿

2 > 0, 𝑤𝐷
2 > 0. The magenta path and yellow path miss the bowl

on the first bounce, thus 𝑤𝐿
1 = 0, as sampling 𝑝𝐿 could produce paths with

zero gradient contribution (e.g., the yellow path).

of 𝑤𝐿 and 𝑤𝐷 , posing challenges in establishing a fixed value uni-
versally effective across all cases. For instance, a path connecting
the camera, a vertex on a non-differentiable surface, and the light
source sequentially may be frequently sampled by the simplified
solution elucidated above. However, it has no contribution to the fi-
nal estimations of the derivatives. An example scene demonstrating
these phenomena is shown in Fig. 3.

From a path space perspective, importance sampling for differen-
tiable rendering requires sampling each light path with probability
density proportional to its contribution. For forward rendering, the
contribution is a product of several factors. However, it no longer
holds for differential rendering, where the contribution of a path is
a finite sum of several terms, each of which is a product. This seems
to require a path space or primary sample space guiding manner,
which requires high-dimensional distributions and is problematic
for long paths.

Our key observation is that the optimal proposal distribution
can still be depicted as a mixture of various local directional dis-
tributions. Notably, the distribution is exclusively conditioned on
the position of the shading point, while the mixture weights relies
on the previously sampled path prefix. Since this new approach
involves mixing several distributions with weights conditioned on
prior vertices, we call it conditional mixture importance sampling.

4.3 Conditional mixture importance sampling
To derive the optimal mixture weights, we must take into account
the entire path rather than focusing solely on the local sampling
decision. To enhance clarity, we denote a path as 𝒙 = 𝒙1𝒙2 . . . 𝒙𝑛 .
We further represent a path prefix as←−𝒙𝑖 = 𝒙1 . . . 𝒙𝑖 .

Given a path prefix←−𝒙𝑖 , our objective is to determine the target dis-
tribution for sampling the direction −−−−−→𝒙𝑖𝒙𝑖+1. Note that this direction
is employed in estimating both 𝐿𝑜 (𝒙𝑖 ,−−−−−→𝒙𝑖𝒙𝑖−1) and 𝜕𝜋𝐿𝑜 (𝒙𝑖 ,−−−−−→𝒙𝑖𝒙𝑖−1).
Consequently, we can express the contribution of the entire path
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Fig. 4. Visualization of three directional distributions at two shading points,
each fitting the primal integrand, positive gradients, and negative gradients,
respectively. Derivatives are with respect to the roughness of the logo.

through these two components as

𝜕𝜋
©«𝐿𝑜

𝑖−1∏
𝑗=1

𝑓𝑗
ª®¬ = 𝐿𝑜 𝜕𝜋

𝑖−1∏
𝑗=1

𝑓𝑗 + (𝜕𝜋𝐿𝑜 )
𝑖−1∏
𝑗=1

𝑓𝑗 . (6)

Here, 𝐿𝑜 is the shorthand for 𝐿𝑜 (𝒙𝑖 ,−−−−−→𝒙𝑖𝒙𝑖−1) and 𝑓𝑖 is the shorthand
for the BSDF 𝑓𝑠 (𝒙𝑖 ,−−−−−→𝒙𝑖𝒙𝑖+1,−−−−−→𝒙𝑖𝒙𝑖−1) of 𝑖-th vertex 𝒙𝑖 . Hence, the tar-
get distribution that includes both parts can be formulated as

𝑝 (𝝎𝑖 |←−𝒙𝑖 ) ∝ 𝑤𝐿 (←−𝒙𝑖 ) 𝑓𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )𝐿𝑖 (𝒙,𝝎𝑖 )+
𝑤𝐷 (←−𝒙𝑖 ) (𝑓𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )𝜕𝜋𝐿𝑖 (𝒙,𝝎𝑖 ) + 𝜕𝜋 𝑓𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )𝐿𝑖 (𝒙,𝝎𝑖 )) .

(7)
These two parts correspond to the two terms in Eq. (6). Thus, the
weights are

𝑤𝐿
𝑖 (←−𝒙𝑖 ) = 𝜕𝜋

𝑖−1∏
𝑗=1

𝑓𝑗 , 𝑤𝐷
𝑖 (←−𝒙𝑖 ) =

𝑖−1∏
𝑗=1

𝑓𝑗 . (8)

Sign variance elimination. The above analysis follows traditional
definition of importance sampling that confined to positive scalar
functions. In cases where the target is a real-valued scalar function,
a common approach involves sampling with a probability propor-
tional to the absolute value of the target distribution. However,
this naive treatment tends to generate high variance as the sam-
ples possess importance weights with different signs. Consequently,
real-valued functions cannot be perfectly importance sampled by a
positive-valued PDF.

To resolve this issue, we apply the idea of positivization as follows.
For a real-valued integrand 𝑓 (𝑥), we construct two estimators for
its positive and negative parts, respectively:〈∫

Ω
𝑓 (𝑥)d𝑥

〉
=

𝑓 + (𝑋+)
𝑝+ (𝑋+) +

𝑓 − (𝑋 −)
𝑝− (𝑋 −) . (9)

Here, the samples 𝑋+ and 𝑋 − are drawn from different proposal
distributions 𝑝+ (𝑥) and 𝑝− (𝑥), respectively.

A challenge is how to apply positivization to the recursive integral
of the differential rendering equation. Applying it separately on each
bounce will cause exponential branching, resulting in an exponential
time complexity with respect to the length of the path.

Roughness (PRB) Roughness (Ours) Re�ectance (PRB) Re�ectance (Ours)

-0.5

0.5

Fig. 5. Equal time (1.5 sec) comparison between PRB and our method,
computing gradients to both the roughness and the reflectance. Our method
utilizes the same distribution fitted from the 𝐿1 norm of gradients.

We observe that the sign of differential radiance is determined
only when it is emitted. When it is scattered, its sign will never
change. This implies that we can decompose the contribution of a
full path by decomposing only the emittance term, which is more
easy to handle. Formally, we separate the adjoint rendering process
into two passes. During the first pass, we clamp all the derivatives to
non-negative values, resulting in a modified differential rendering
equation:

𝜕𝜋𝐿
+
𝑜 (𝒙,𝝎𝑜 ) =

∫
S2

𝑓𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )𝜕𝜋𝐿𝑖 (𝒙,𝝎𝑖 )+ d𝝎⊥𝑖 +∫
S2

𝜕𝜋 𝑓
+
𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )𝐿𝑖 (𝒙,𝝎𝑖 ) d𝝎⊥𝑖 + 𝜕𝜋𝐿+𝑒 (𝒙,𝝎𝑜 ).

(10)
Similarly, during the second pass we clamp all the derivatives to
non-positive values.

Then, we fit proposal distributions that involve derivatives sepa-
rately for the two passes, i.e.,

𝑝𝐷+ (𝝎𝑖 |𝒙,𝝎𝑜 ) ∝ 𝑓𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )𝜕𝜋𝐿+𝑖 (𝒙,𝝎𝑖 )+𝜕𝜋 𝑓 +𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )𝐿𝑖 (𝒙,𝝎𝑖 ),
(11)

𝑝𝐷− (𝝎𝑖 |𝒙,𝝎𝑜 ) ∝ 𝑓𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )𝜕𝜋𝐿−𝑖 (𝒙,𝝎𝑖 )+𝜕𝜋 𝑓 −𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )𝐿𝑖 (𝒙,𝝎𝑖 ).
(12)

An example of these distributions is shown in Fig. 4.
Additionally, we must consider the possibility of sign changes

between consecutive iterations. Our solution is to mix a very small
amount (5% in our implementation) of the negative distribution into
the positive one, and vice versa.

Multiple parameters. The previous analysis assumes a single dif-
ferentiable parameter 𝜋 . The extension to multiple parameters is
straightforward. Since now the gradient becomes a vector, we need
to convert it into a scalar before fitting the sampling distributions.
We currently use the 𝐿1 norm of the gradient:

𝑝𝐷 (𝝎𝑖 |𝒙,𝝎𝑜 ) ∝ ∥ 𝑓𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )𝜕𝜋𝐿𝑖 (𝒙,𝝎𝑖 )+𝜕𝜋 𝑓𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )𝐿𝑖 (𝒙,𝝎𝑖 )∥1 .
(13)

Special care should be taken when the parameters exhibit diverse
units and thus the scales of their respective gradients may vary
significantly. In this case, additional normalization steps are required.
To ensure stability during inverse optimization, we normalize all
parameter values to the interval [0, 1] during the whole process.

Fig. 5 showcases an example that validates our solution. As ob-
served, our method consistently produces low variance gradients,
utilizing the same distribution to handle multiple parameters.
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5 CONDITIONAL MIXTURE PATH GUIDING
Based on the above analysis and the proposed conditional mix-
ture importance sampling algorithm, we develop a practical PBDR
pipeline named conditional mixture path guiding. This new pipeline
allows us to well handle many challenging cases (strong indirect
illumination, caustics, and complex visibility) that are not solvable
by previous works in inverse rendering.

In previous works, a separate training phase with hundreds of
samples per pixel is used for path guiding in forward rendering, and
the learned distribution is subsequently used during final rendering.
However, for differentiable rendering, there are extremely few sam-
ples (i.e., ≤ 32) per pixel for each optimization step. This leads to
many design decisions that deviate from the forward counterpart.

In our pipeline, there is only one guiding iteration for each opti-
mization step. No separate training phase exists. Every sample is
utilized for both fitting the guiding distributions and optimizing the
scene parameters. Since it is impossible to fit distributions indepen-
dently for every optimization step, the distributions are updated
incrementally over all the iterations.

Sample gathering. We use the path samples gathered in the pre-
vious rendering iteration to update the guiding distribution. We
follow the general pipeline of PRB [Vicini et al. 2021] in which each
iteration consists of three rendering passes. The first is a primal
rendering pass like conventional forward rendering for the loss com-
putation. While it is still primitive, the second pass gathers data for
the third pass, which backpropagates adjoint radiance throughout
the scene using the same set of samples as in the second pass. We
use the samples from the first and the second pass to fit 𝑝𝐿 , and the
last pass to fit 𝑝𝐷 .

Distribution fitting. We use KD-tree as the spatial structure and
adopt the adaptive quadtree to represent directional distributions,
with stochastic spatial filtering and box directional filtering enabled
[Müller 2019]. We subdivide a spatial node if the number of primal
samples inside a spatial cell is greater than 32000. A directional
node will be subdivided only if it contains more than 1% flux of
the whole quadtree [Müller et al. 2017]. Each spatial node contains
three quadtrees, corresponding to 𝑝𝐿 , 𝑝𝐷+, and 𝑝𝐷− respectively.

We update all the structures and distributions upon the comple-
tion of an entire optimization step. We sequentially refine the tree
structures, splat the samples into the tree, and then build the dis-
tribution by setting the value of non-leaf nodes to the sum of its
children. The path samples in each optimization step are generated
using a copy of the distribution before updating [Müller et al. 2017].
For inverse rendering, the scene is changing with every iteration.
To fit an accurate sampling distribution for the current iteration,
the samples gathered from previous iterations are usually less use-
ful. For this reason, we use a constant decay weight (i.e., 0.9) in an
exponential weighting scheme for distributions over iterations.

Importance sampling. To determine the sampling directions, we
first use Eq. (8) in Sec. 4.3 to compute the mixture weights. Then,
we randomly choose one of the two distributions according to the
weights and draw samples from the chosen distribution. It is nec-
essary to query the two distributions to obtain a weighted average

Table 1. Experimental setup. We show the average time of kernel execution
for each iteration using Mitsuba’s megakernel mode. 𝑛 +𝑚 SPP means
using 𝑛 spp for primal rendering and𝑚 app for adjoint rendering.

Figure PRB Ours
SPP Time SPP Time (render) Time (fit)

Fig. 1 16 + 16 1.878 16 + 16 2.271 0.687
Fig. 9 24 + 4 1.797 16 + 4 1.928 0.815
Fig. 12 40 + 2 0.338 16 + 2 0.308 0.165

Primal

rMSE 0.17

PRB

rMSE 0.02

Ours Reference

-0.5

0.5

Fig. 6. Equal sample comparison (16 spp) comparing our derivative estima-
tion with respect to the teapot’s roughness with PRB at the 10th iteration.

Target

MSE 5.51e-07

PRB

MSE 5.80e-09

Ours Reference

-2e-04

2e-04

Fig. 7. Equal time comparison (2 sec) between our method and PRB. We
show the gradients with respect to the normals backpropagated to textures.
The guiding distribution is fitted through 10 iterations. The roughness of
the water surface is 0.1.

Fig. 8. Comparison with parameter-space ReSTIR [Chang et al. 2023]. We
compute derivatives to the base color of the paint. The scene configuration
is shown in Fig. 10.

before evaluating the probability density. Note that during the pri-
mal rendering phase, we sample paths simply using 𝑝𝐿 . Besides, we
always undertake a 25% defensive sampling (with regular BSDF sam-
pling in our implementation) to avoid an arbitrarily small probability
density and keep the estimator unbiased for both primal and adjoint
rendering passes, following the path guiding convention [Vorba
et al. 2019]. For the first iteration, without guiding distributions
available, we exclusively perform BSDF sampling.
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Fig. 9. Optimizing spatially varying base color for two bowls using a single view. The scene includes strong indirect illumination.

6 RESULTS
We have implemented our method in Mitsuba 3 [Jakob et al. 2022].
The rendering parts run on the CPU with the LLVM backend, while
the distribution fitting part uses a standalone C++ implementation.
Distributions are stored as 1D textures in Dr.Jit. Each tree node
corresponds to a texel storing values and indices of its children.
The indices of texels correspond to the indices of tree nodes. When
sampling and querying distributions, the texture is queried at each
level of the tree to select one of the child nodes and compute the
probability density in the corresponding region. We pad the texture
size to a fixed value to avoid mega-kernel recompilation. For gra-
dient estimation, we show the relative mean squared error (rMSE)
with a ground truth rendered using PRB at high sample rates. For
inverse rendering comparison, we show rendering loss and param-
eter loss. We use MSE as the loss function and Adam optimizer
without momentum. All timings are conducted on a PC with Intel
i9-13900KF 24-core CPU and NVIDIA RTX 4080 GPU.

We evaluate our method in scenes with complex light transport
effects, such as high-frequency caustics, strong indirect illumination,
and complex visibility. The experimental setting is shown in Table
1. We plot the loss except for the first four iterations to circumvent
extremely high values since spatial structures are not yet subdivided
thoroughly [Müller 2019]. One can alternatively treat the first few
iterations as a burn-in phase [Wang et al. 2023].

Gradient estimation. In Fig. 6, we compare our method with PRB
using BSDF sampling with Next-Event Estimation (NEE). The scene
is a well-known example characterized by strong indirect illumina-
tion. Our evaluation involves gradient estimation in the forward
mode of the teapot’s roughness. Here, a path with a non-zero gra-
dient contribution must connect the teapot and the light source
positioned behind the door. Detached BSDF sampling and NEE of
PRB struggle to sample such paths, resulting in noisy gradient esti-
mation. Our method can fit the distribution from historical samples
and guide the sampling towards high-contribution regions. As a
result, our method achieves significantly lower variance estimation
than PRB.

Texture optimization. The convergence of optimization using dif-
ferent estimators in a simple optimization task is shown in Fig. 9.
We use a single view to optimize the spatially variable base color
of two bowls. The scene contains strong indirect illumination: the
sunlight passing through the window is occluded, so the bowls only
receive indirect lighting. We compare inverse optimization using
two estimators: PRB using detached BSDF sampling with NEE and
our mixture guiding estimator. In such a setting, the BSDF sampling
and NEE of PRB fail to reach paths that connect the diffuse shad-
ing point inside the bowl to the light source passing through some
diffuse reflector and the glass window. Consequently, PRB gener-
ates extremely sparse derivatives, which makes the optimization
process diverge. Thanks to the strong capability of path guiding in
handling indirect illumination, our method significantly reduces
the variance of gradient estimation as shown in Fig. 7, resulting in
stable convergence and clear details in the reconstructed textures.

Caustics optimization. Fig. 1 showcases the reconstruction of the
normal map texture of the water in a pool. This scene involves
high-frequency underwater caustics caused by waves on the near-
specular surface. The underlying simulation involves the well-known
SDS paths, which is known as a failure case for unidirectional or
bidirectional path tracing. In such a setting, the BSDF sampling and
NEE of PRB fail to generate paths with high contribution. Our ap-
proach can learn and importance sample high-frequency transport
leading to reduced variance in both primal rendering and gradient
estimation. As a result, our method is able to recover the caustic
patterns close to the references.

Comparison with parameter-space ReSTIR. In Fig. 10, we com-
pare our method with parameter-space ReSTIR [Chang et al. 2023].
We optimize the base color of the paint receiving indirect lighting
passing through a hole and show the derivatives in Fig. 8. Since
parameter-space ReSTIR only implements the sample reuse for the
adjoint rendering phase, we use high sample rates for both two
methods, such that the quality difference in primal rendering is
small. Even in this setting, parameter-space ReSTIR still produces
much more noise in the gradients than ours, resulting in slower
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Fig. 10. Comparing with parameter-space ReSTIR in reconstructing the paint’s base color under direct lighting passing through a hole.
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Fig. 11. Comparing various mixture sampling methods by optimizing the roughness texture of the rough conductor plane to reconstruct the SIGGRAPH logo.
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Fig. 12. In Veach Ajar, a well-known scene with prominent indirect illumination, we reconstruct the base color of the painting on the wall.

ACM Trans. Graph., Vol. 43, No. 4, Article 1. Publication date: August 2024.



Conditional Mixture Path Guiding for Differentiable Rendering • 1:9
Fo

rw
ar

d
Te

xt
ur

e
vi

s.

Rendering Loss 0.047 0.040 MSE

Parameter Loss 0.006 0.005 MSE

Initial Opt. (Fwd. only) Opt. (Ours) Target

0 15 30 45 60 75 90 105 120 135

4.0e-02

5.0e-02

6.0e-02

Re
nd

er
in

g
Lo

ss

Rendering Loss
Fwd. only
Ours

0 15 30 45 60 75 90 105 120 135
Iterations

5.25e-03

5.50e-03

5.75e-03

6.00e-03

Pa
ra

m
et

er
Lo

ss

Parameter Loss

Fwd. only
Ours

Fig. 13. We compare our complete method with a variant that utilizes path guiding solely to enhance rendering quality in the primal phase, denoted as “Fwd.
only”. We optimize the normal map of the water surface whose roughness is 0.1.

optimization convergence. This disparity arises from the fact that in
that approach, sample reuse is performed independently in each pa-
rameter space. In contrast, our guiding distribution is shared within
each leaf node of the spatial structure, leveraging spatial coherence
more effectively.

Validation of mixture sampling. In Fig. 2, we show the derivatives
rendered using two independent distributions and their mixture.
Using 𝑝𝐿 only causes a high variance for estimating the differential
radiance since the differential quantities are not considered. On the
other hand, using 𝑝𝐷 also results in very noisy estimation. This
is because estimating the derivatives also requires estimating the
ordinary radiance, but the differential integrand may be extremely
small in some regions where the primal integrand is large (e.g., Fig.
4). A fixed mixture sampling achieves a proper balance between
these two parts, resulting in significantly lower variance.

Validation of optimal mixture weights. We validate our proposed
mixture importance sampling against the fixed mixture in Fig. 11.
Our conditional mixture path guiding successfully predicts the op-
timal weight and produces derivative estimation with much less
noise than various constant weighting schemes. Consequently, our
method leads to faster convergence of inverse optimization.

Validation of positivization. We validate our application of posi-
tivization in Fig. 14. When our guiding pipeline is employed without
positivization, the target function is set as the absolute value of the
integrand. The scene incorporates two light sources from different
angles, introducing both positive and negative gradients, respec-
tively. As seen, the variant without positivization results in a higher
variance in gradient estimate due to sign changes. Our application

Primal

rMSE 0.43

w/o Positiv.

rMSE 0.18

w/ Positiv. Reference

-0.5

0.5

Fig. 14. Positivization significantly reduces sign variance, generating gradi-
ents closer to the reference. The derivative is with respect to the roughness
of the conductor plane.

of positivization significantly reduces the sign variance, producing
gradients more akin to the reference with negligible overhead.

Forward only vs. our complete model. In the context of inverse
rendering, one can utilize path guiding solely to enhance the ren-
dering quality in the primal phase, while keeping the sampling in
the adjoint phase unchanged. We compare this variant, denoted as
“Fwd. only” with our complete method in Fig. 13. Guiding the primal
rendering reduces the variance in the primal rendering, leading to
decreased variance and bias in the derivative of pixel intensity with
respect to radiance. However, the variance in the derivative of radi-
ance with respect to scene parameters remains high. In contrast, our
complete method improves both parts and thus facilitates smooth
convergence during optimization, resulting in clearer reconstructed
caustic patterns.

Additionally, Fig. 15 compares our approach with a naïve applica-
tion of path guiding using solely 𝑝𝐿 with positivization. Our method
demonstrates visible variance reduction compared to this baseline,
which validates the importance of conditional mixture sampling.
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Primal

rMSE 10.26

Naı̈ve

rMSE 4.53

Ours Reference

-1

1

Fig. 15. Conditional mixture sampling achieves more variance reduction
than a direct application of conventional path guiding and positivization.
The derivative is with respect to the roughness of the bunny.

Con�guration PRB Ours Reference

-0.01

0.01

Fig. 16. Estimation of derivatives with respect to the ball’s rotation angle
by combining warped-area sampling [Bangaru et al. 2020].

Geometric derivatives. Although our initial focus is material deriva-
tives, our method is also beneficial for geometric derivatives. We
apply our method to reparameterized PRB, where warped-area sam-
pling [Bangaru et al. 2020] is employed to estimate boundary terms.
The only difference is that the BSDF derivatives 𝜕𝜋 𝑓𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )
is replaced by 𝑓𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )𝜕𝜋 ∥ 𝐽𝑅 (𝒙, 𝜋)∥, where 𝑅 is the reparam-
eterization and 𝐽𝑅 is its Jacobian [Zeltner et al. 2021]. As demon-
strated in Fig. 16, our method can still guide samples towards high-
contribution regions, leading to significant variance reduction.

7 DISCUSSIONS
Hyper-parameters and design choices. Our guiding pipeline is

generic and largely extendable with many design choices and hyper-
parameters. For instance, setting a low spatial subdivision threshold
could lead to noisy directional distributions due to insufficient sam-
ples available for fitting. Conversely, a high threshold may result in
coarse distributions and inefficiency, especially in scenarios with
strong spatial-directional correlations (e.g., Fig. 1).

Our method introduces one extra parameter, the decay rate of dis-
tributions across optimization steps. The choice should be informed
by the magnitude of change between iterations. The optimal choice
could also be inspired by recent works [Nicolet et al. 2023].

Difference between consecutive iterations. Since the distribution
is fitted using samples from the previous few iterations, how to
confront a significant change in between iterations still needs to be
explored [Balint et al. 2023; Chang et al. 2023].

Failure cases. Guided sampling is not guaranteed to perform better
than BSDF sampling, especially when the incident radiance field is
low-frequency. Besides, in some cases like caustics cast by specular
surfaces and tiny area light, the radiance distributions cannot be
fitted well. An example is shown in Fig. 17, where the roughness
of the water surface is much lower than that of Fig. 1. How to cope
with such situations is an interesting topic for further study.
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Initial Opt. (PRB) Opt. (Ours) Target

Fig. 17. A failure case of our method due to high-frequency radiance fields
cast by near-specular surfaces and tiny area light source. We optimize the
normal map of the water surface, whose roughness is 0.01.

8 CONCLUSION
Our work presents the first guided importance sampling technique
for differentiable rendering focused on material parameters. Simply
adopting path guiding for forward rendering may perform poorly
since differentiable rendering involves estimating the ordinary and
differential radiance simultaneously and usually utilizes the same
path for both of them. In light of this, we propose a mixture sampling
strategy and determine the optimal weight, which is conditioned on
the vertices that have already been sampled. We further leverage
positivization to achieve theoretical zero-variance convergence and
support multiple parameters using the 𝐿1 norm of gradients. We
develop an effective pipeline that employs samples from successive
gradient descent iterations to fit distributions incrementally. This
serves as a novel adaptation of the path guiding to differentiable
rendering, which leads to significantly lower variance and better
convergence. We believe our work signifies a foundational step in
devising sampling strategies for material derivatives under global
illumination, suggesting promising avenues for variance reduction
in the realms of differentiable and inverse rendering.
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