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1 REMAINDER VARIABLES
The concept of remainder variables plays a vital role in our pipeline.
In this section, we provide a formal discussion of its bounding cor-
rectness and details regarding the approximation for square root
functions.

1.1 Correctness
Since the remainder variables are used for both refraction approxi-
mations and degree reductions in our pipeline, we consider a gen-
eral setting. We aim at bounding the range of a complex function
𝑔(𝑢, 𝜃 (ℎ(𝑢))). Both 𝑔 and ℎ are already rational, but 𝜃 is not ratio-
nal. Denote 𝑡 = ℎ(𝑢). We have a cheap approximation 𝜃 (𝑡) of 𝜃 (𝑡)
with the error being

𝛿 (𝑡) = 𝜃 (𝑡) − 𝜃 (𝑡) . (1)

TheoRem 1.1. Assuming that we can compute a bound of the ap-
proximation error, 𝛿, 𝛿 . Then, we can safely replace 𝜃 (𝑡) with

𝜃 (𝑡, 𝜉) = 𝜃 (𝑡) + (1 − 𝜉)𝛿 + 𝜉𝛿, (2)

which guarantees

ran 𝑔(𝑢, 𝜃 (ℎ(𝑢))) ⊆ ran 𝑔(𝑢, 𝜃 (ℎ(𝑢), 𝜉)) (3)

Here, 𝜉 ∈ U is a (new) remainder variable, which is independent
from 𝑡 . We denote the range of a function 𝑔 as ran 𝑔.
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PRoof. By re-arrange the terms of Eq. (1) and Eq. (2), we have

𝜃 (𝑡, 𝜉) = 𝜃 (𝑡) − 𝛿 (𝑡) + (1 − 𝜉)𝛿 + 𝜉𝛿 . (4)

For each 𝑡 , 𝛿 (𝑡) ∈ [𝛿, 𝛿], so ∃𝜉 s.t. 𝛿 (𝑡) = (1 − 𝜉)𝛿 + 𝜉𝛿 . Therefore,
for each 𝑢, ∃𝜉 such that 𝜃 (ℎ(𝑢), 𝜉) = 𝜃 (ℎ(𝑢)). Hence,

∀𝑢, ∃𝜉, 𝑔(𝑢, 𝜃 (ℎ(𝑢), 𝜉)) = 𝑔(𝑢, 𝜃 (ℎ(𝑢))) . (5)

□

In otherwords, the approximationwith remainder variables never
shrinks the range.Therefore, the range bound using the approxima-
tion is still valid for the original function. This largely extends the
families of functions we can handle with controllable complexities.

For the refraction approximation, the above 𝜃 (𝑡) corresponds to√
𝛽𝑖 and ℎ(𝑢) corresponds to 𝛽𝑖 (𝒖𝑖 ).

1.2 Primal approximation for square roots
We opt for linear approximations to maintain simplicity and min-
imize degrees1. The primary objective is to derive appropriate co-
efficients for the linear function and remainder variables. When
computing positional bounds, our approximation is

𝑟 (𝛽𝑖 ) = 𝑎𝛽𝑖 + 𝑏. (6)

Adding a remainder variable, it becomes

𝑟 (𝛽𝑖 , 𝜉𝑖 ) = 𝑟 (𝛽𝑖 ) + (1 − 𝜉𝑖 )𝛿𝑖 + 𝜉𝑖𝛿𝑖 . (7)

Assuming the range of 𝛽𝑖 is [𝛽𝑖 , 𝛽𝑖 ], we compute the slope using
the interval endpoints

𝑎 =

√
𝛽𝑖 −

√
𝛽𝑖

𝛽𝑖 − 𝛽𝑖
. (8)

Note that we assume 𝛽𝑖 > 0. The part of its range smaller than
0 is meaningless, so we always clamp 𝛽𝑖 to be greater than 0. Let

𝑟 (𝛽𝑖 ) =
√
𝛽𝑖 , we set 𝑏 to

𝑏 =
√
𝛽𝑖 − 𝑎𝛽𝑖 . (9)

The approximation error writes

Δ =
√
𝑥 − 𝑎𝑥 − 𝑏. (10)

1In principle, even a constant approximation could also be employed; however, we
found that this approach results in exceedingly loose bounds.
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The position 𝑥 with maximal approximation error can be easily ob-
tained by computing the zeros of the derivatives to 𝛽𝑖 :

𝑥 =
1

4𝑎2
. (11)

Therefore, the range of 𝛿 is

𝛿 = 0, 𝛿 = Δ. (12)

1.3 Derivative-aware approximation for square roots
Our goal is to keep the bound valid for any rational function 𝐹 of
the primal value and the first-order differentials of

√
𝛽𝑖 :

𝐹

(
𝑢,

√
𝛽𝑖 ,

𝜕
√
𝛽𝑖

𝜕𝛽𝑖

)
, (13)

which we approximate using

𝐹

(
𝑢, 𝑟 (𝛽𝑖 , 𝜉𝑖 , 𝜁𝑖 ),

𝜕𝑟 (𝛽𝑖 , 𝜉𝑖 , 𝜁𝑖 )
𝜕𝛽𝑖

)
. (14)

Here, 𝑢 represents variables that do not depend on 𝛽𝑖 . Note that
we only consider the derivative to 𝛽𝑖 because it depends on our ap-
proximation. We have to keep the bound of both the primal and the
differential correct at the same time, so we introduce a two-stage
compensation using two remainder variables 𝜉𝑖 and 𝜁𝑖 . In particu-
lar, we first correct the differential using

𝑟d (𝛽𝑖 , 𝜉𝑖 ) = 𝑎𝛽𝑖 + 𝑏 +
(
(1 − 𝜉𝑖 )𝛿𝑖 + 𝜉𝑖𝛿𝑖

)
(𝛽𝑖 − 𝑐), (15)

where 𝜉𝑖 controls the slope of the line. Then, we correct the primal
value

𝑟 (𝛽𝑖 , 𝜉𝑖 , 𝜁𝑖 ) = 𝑟𝑑 (𝛽𝑖 , 𝜉𝑖 ) + (1 − 𝜁𝑖 )𝛿 ′𝑖 + 𝜁𝑖𝛿
′
𝑖 . (16)

Note that 𝜁𝑖 does not change the differential, so we still have
𝜕𝑟 (𝛽𝑖 , 𝜉𝑖 , 𝜁𝑖 )

𝜕𝛽𝑖
= 𝑎 + (1 − 𝜉𝑖 )𝛿𝑖 + 𝜉𝑖𝛿𝑖 . (17)

Now, we derive the coefficients. The slope of the line (for the
linear approximation) is computed from the average of the slope at
two endpoints:

𝑎 =
1
2

©­­«
1

2
√
𝛽𝑖

+ 1

2
√
𝛽𝑖

ª®®¬ , (18)

using the fact that (
√
𝑥)′ = 1

2
√
𝑥
. The error range is

𝛿𝑖 = −Δd

2
, 𝛿𝑖 =

Δd

2
, (19)

where
Δd =

1

2
√
𝛽𝑖

− 1

2
√
𝛽𝑖

. (20)

We align the primal value of the line with the true value of square
roots at the left endpoint, so we have

𝑏 =
√
𝛽𝑖 − 𝑎𝛽𝑖 . (21)

Likewise, we set the slope adjusting term
(
(1 − 𝜉𝑖 )𝛿𝑖 + 𝜉𝑖𝛿𝑖

)
(𝛽𝑖−𝑐)

to zero at the left endpoint, so

𝑐 = 𝛽𝑖 . (22)

Lastly, the approximation error for the primal value is

√
𝑥 −

√
𝛽𝑖 −

𝑥 − 𝛽𝑖

2
√
𝑥

=
1
2

(
1 −

√
𝛽𝑖/𝑥

)2
≤ 1

2

(
1 −

√
𝛽𝑖/𝛽𝑖

)2
, (23)

where
𝑥−𝛽𝑖
2
√
𝑥

comes from the product of the corrected slope 1
2
√
𝑥

and the difference of the point 𝑥 and the left endpoints. The above
expression is always non-negative and has an upper bound

Δp =
1
2

(
1 −

√
𝛽𝑖/𝛽𝑖

)2
. (24)

Therefore,
𝛿 ′𝑖 = 0, 𝛿

′
𝑖 = Δp . (25)

2 ADDITIONAL DETAILS ABOUT IRRADIANCE
In this section, we discuss some details regarding the computation
and use of the irradiance bound.

2.1 Derivation of irradiance expressions
We discuss the remaining three terms of the irradiance formulation.

The first term is a (regular) geometric term [Veach 1998], which
is only related to the light source and the vertex positions of the
first triangle:

dΩ0

d𝐴1
=

dΩ0

d𝐴⊥
1

d𝐴⊥
1

d𝐴1
=

cos𝜃0
|𝒅0 |2

. (26)

Here, 𝜃0 represents the (planar) angle between the light source to
point 𝒙1 and the (geometrical) normal of the mirror. Considering
cos𝜃0 includes a square root function, we factor it out to make the
remaining expression rational and correct the range bound by mul-
tiplying the range of cos𝜃0 via interval multiplication. This keeps
the bound correct and only becomes loose when cos𝜃0 has a large
deviation, which seldom happens in practice.

The Jacobian of the transformation between the barycentric co-
ordinates and the vertex positions is���� 𝜕𝒙1𝜕𝒖1

���� = |®𝒆1,1 × ®𝒆1,2 |, (27)���� 𝜕𝒖𝑘𝜕𝒙𝑘

���� = 1��� 𝜕𝒙𝑘𝜕𝒖𝑘

��� = 1

|®𝒆𝑘,1 × ®𝒆𝑘,2 |
. (28)

2.2 Total irradiance contributions
We leverage position and irradiance bounds to analyze the total
irradiance contribution 𝐸 (T , 𝒖𝑘 ,T𝑘 ) using the following theorem:

TheoRem 2.1. Suppose the union of disjoint rectangles2 𝑼 1
1 , . . . , 𝑼

𝑛
1

covers U2. Each 𝑼 𝑖
1 corresponds to a position bound 𝑼 𝑖

𝑘
and an irra-

diance bound 𝑬𝑖
𝑘
. The total irradiance 𝐸 (T , 𝒖𝑘 ,T𝑘 ) satisfies

𝐸 (T , 𝒖𝑘 ,T𝑘 ) ≤ 𝐸 (T , 𝒖𝑘 ,T𝑘 ) =𝑚 max
𝒖𝑘 ∈𝑼 𝑖

𝑘

𝐸
𝑖
𝑘 . (29)

2We consider this partition of domain since we need a piecewise constant bound in
certain cases to improve tightness.
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PRoof. We enumerate all 𝒖1 that corresponds to a given 𝒖′
𝑘
:

𝐸 (T , 𝒖′𝑘 ,T𝑘 ) =
∑

𝒖′
𝑘
=𝒖𝑘 (𝒖1 )

𝐸𝑘 (𝒖1) ≤
∑

𝒖′
𝑘
=𝒖𝑘 (𝒖1 )

max
𝒖1∈𝑼 𝑖

1

𝐸
𝑖
𝑘

≤
∑

𝒖′
𝑘
=𝒖𝑘 (𝒖1 )

max
𝒖′
𝑘
∈𝑼 𝑖

𝑘

𝐸
𝑖
𝑘 ≤ 𝑚 max

𝒖′
𝑘
∈𝑼 𝑖

𝑘

𝐸
𝑖
𝑘 .

(30)

Here,𝑚 is the maximal number of solutions. □

2.3 Deciding 𝛾 for sampling
We first consider how to find 𝛾 given an expected size𝑊 of |S|. For
a given𝑊 , we find 𝛾 by solving

∑𝑇
𝑡=1min

(
𝛾𝐸 (T ), 1

)
=𝑊 using bi-

section since the left-hand side is monotonic to𝛾 . Note that the time
complexity of evaluating the left-hand side is O(1) using a prefix
sum. Therefore, the total time complexity of finding 𝛾 is O(log𝑉 ),
with 𝑉 being the reciprocal accuracy.

In practice, caustics are often unevenly distributed spatially, with
certain regions requiring significantly more budgets than others.
Consequently, using a global constant 𝑊 would be sub-optimal.
Our bound of variance allows users to specify an expected 𝜇2

∗,
which we leverage to solve

𝑇∑
𝑡=1

𝐸2 (T )
min

(
𝛾𝐸 (T ), 1

) = 𝜇2
∗ (31)

via bisection to find 𝛾 . This automatically adjusts the sample count
to control the variance, achieving a satisfactory rendering result3.
Our previous discussion utilizes population variance, i.e., the ex-

pected value of sample variance. However, sample variance can be
significantly higher than population variance, especially with low
sample counts, leading to undesirable fireflies even in low-energy
regions. We recommend specifying the maximal sample variance
𝑆2

∗
. The solution for 𝛾 is analogous.
In general, automatically determining𝛾 based on a variance limit

enhances interpretability. However, our findings indicate that this
approach does not yield a better rendering result compared to man-
ually tuned 𝛾 . Consequently, we employ the automatic method in
only one scene (Slab) for demonstration purposes.

3 ADDITIONAL DISCUSSIONS
In this section, we provide additional discussions of several issues
regarding complexities, design choices, and extensions.

3.1 Complexity analysis
Since the sampling overhead is small, as we have analyzed in the
performance statistics section, we only consider the complexity of
the precomputation pass. Generally, the time complexity of the pre-
computation is a product of the number of primitive tuples and the
complexity of bounding one primitive tuple.

3We decide the sample count a priori. This differs from adaptive sampling, which de-
cides the number of samples after the generation of a part of the samples, which in-
troduces correlation and could be unstable due to relying on variance estimations. At
the same time, ours is uncorrelated and does not introduce bias. Moreover, our multi-
sample estimator could reach zero variance even when the distribution is not accurate
(i.e., tight) at the cost of a sufficient (but still finite) number of samples.

The number of primitive tuples. Assuming 𝑁 the number of tri-
angles in the scene and the number of specular bounces is 𝑘 − 1,
the worst case number of tuples is 𝑁𝑘−1. However, due to our use
of incremental tuple constructions, the number of primitive tuples
is approximately 𝑁𝐶𝑘−2, with 𝐶 being a constant indicating how
many triangles an outgoing beam will intersect on average, which
ranges from 10 to 20 in our test scenes. When non-planar receivers
are used, an additional 𝐶 should be multiplied.

The time complexity of bounding one primitive tuple. For a sin-
gle piece, the computational complexity is primarily determined
by tensor convolution with the largest size. For example, for sin-
gle refraction, we require convolving two 8× 8matrices. For single
refraction, we need to convolve two 3 × 3 × 12 × 12 tensors, with
the first two dimensions corresponding to the remainder variables.
We use brute-force convolution since we found Fourier transforms
easily lose accuracy. However, when scaled to double bounces, this
quickly becomes impractical. Generally, the degree of position ra-
tional functions is approximately 𝐴𝑘−1, while the degree of irra-
diance is 4𝐴𝑘−1. Here, the constant 𝐴 takes the value of 2 for re-
flection, 3 for refraction, and is doubled for interpolated normals.
As aforementioned, we use degree reduction to keep the length of
each dimension of the tensor below 40. Remainder variables are
also replaced by a new one. Therefore, the final computation time
for double refraction, on average, is only several milliseconds (sin-
gle core) for each piece.

With degree reductions, the computation time for bounds on
longer chains can still be maintained in a reasonable range. How-
ever, the limitation arises from the increasing number of tuples and
looser bound, which can lead to overall performance issues.

Storage. The data used to compute the bound can be free immedi-
ately after we finish the computation of each piece, so the memory
overhead is primarily the storage of bounds. This depends on the
scene, which has been shown in the rendering statistics.

3.2 Design choices
Coefficients after domain subdivision. Transforming a rational func-

tion from its form before subdivision to its form after subdivision
is fundamentally a linear transformation of polynomial variables.
This transformation exhibits lower complexity, as it involvesmatrix
multiplication for tensors, compared to recomputing from scratch
through tensor convolution. Despite this efficiency, we still choose
to recompute the functions. There are two primary reasons for this
decision. First, in the case of single scattering, the degrees of the
functions are relatively low,making the difference in computational
approaches negligible. Second, for multiple scattering, certain ap-
proximations depend on the range of intermediate variables. After
subdivision, these ranges change, necessitating recomputation to
enhance accuracy. In other words, recomputation is essential if we
aim to ensure that the bounds converge to the true value with infi-
nite subdivision depth when such approximations are employed.

Power basis vs. Bernstein basis. The power basis often faces nu-
merical issues, particularly the phenomenon where the transforma-
tion matrix between the two bases is ill-conditioned. Consequently,
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for multiple scattering, we compute all polynomials using the Bern-
stein basis. However, for single scattering, we initially utilize the
power basis and subsequently transform it to the Bernstein basis
before calculating the bounds. This approach is advantageous be-
cause the coefficient matrix is upper triangular in the power basis,
which helps to reduce computational costs.

Strictly conservative bounds. Our method focus a theoretically
conservative bound. The sole exception is that we do not account
for multiple solutions within a primitive tuple, which decision is
based on our empirical findings and could be explored by future
works. Nevertheless, the strict validity of the bounds may not be
the most efficient approach. In practice, we believe that eliminating
certain complexities, such as remainder variables and high degrees,
could significantly accelerate the algorithm, enhancing its suitabil-
ity for complex scenes.

3.3 Extensions
Glossy materials. Extending our method to accommodate glossy

materials is a straightforward process. While we currently do not
incorporate glossy receivers into our sampling probability design,
integrating product importance sampling [Herholz et al. 2016] into
our pipeline is feasible, albeit with an𝑂 (|U|) cost due to the need to
enumerate tuples and multiply the BSDF value by the probability
[Fan et al. 2023]. For glossy chains, the addition of new dimensions
to support normal offsets is all that is required.

Normal mapping. Conceptually, we should employ tessellation
to generate a standard triangle mesh; however, it is not necessary
for the tessellated mesh to be fully stored. The development of a
specialized and more efficient method for high-resolution normal
and displacement mapping remains a topic for future research. Ex-
ploring alternative rational coordinate mappings for other rational
surfaces, such as splines, presents an intriguing avenue for future
research.

4 IMPLEMENTATION DETAILS
In this section, we present the implementation details along with
the accompanying pseudo code. All computations are performed in
double-precision4.

4.1 Pseudo code
Coefficients. Given a primitive tuple and a domain of 𝑢1, the first

step is to derive rational functions, which we implement as polyno-
mials. First, we take a single reflection as an example.

1 def get_coefs_R(tseq, u1m, u1M, v1m, v1M):
2 # ... Extract data from tseq (triangle tuple)
3 # Note that P11 corresponds to e_{1,1} in the main paper.

Likewise, N11 corresponds to n_{1,1}‐n_{1,0}↩→
4 # The variables below are already (vector) polynomials
5 # m: the lower bound. M: the upper bound
6 p10 = P10 + P11 * u1m + P12 * v1m
7 p11 = P11 * (u1M ‐ u1m)
8 p12 = P12 * (v1M ‐ v1m)

4Since degree reductions maintain polynomial degrees below 40, they contribute to
improved numerical stability. It is important to note that these reductions not only
enhance performance but also improve accuracy. We have observed instances where
the original polynomials fail to yield a finite bound, whereas the reduced ones succeed.

9 n10 = N10 + N11 * u1m + N12 * v1m
10 n11 = N11 * (u1M ‐ u1m)
11 n12 = N12 * (v1M ‐ v1m)
12
13 x1 = p10 + p11 * u + p12 * v
14 n1 = n10 + n11 * u + n12 * v
15
16 d0 = x1 ‐ x0
17 d1 = d0 * (n1.dot(n1)) ‐ n1 * (n1.dot(d0)) * 2
18
19 # suffix p means numerators
20 u2p = d1.cross(p22).dot(x1 ‐ p20)
21 v2p = (x1 ‐ p20).cross(p21).dot(d1)
22 k2 = d1.cross(p22).dot(p21)
23 C = d0.dot(d0) # Denominator of the geometric term
24
25 # Test of signs
26 s0 = n1.dot(d0) * (‐1) # Incident light comes from the

front side↩→
27 s1 = (x1 ‐ p20).cross(p21).dot(p22) * k2 # Ray goes

forward, not backward↩→
28
29 return u2p, v2p, k2, C, s0, s1

We note that the above sign tests should be designed according to
specific application cases, particularly regarding whether the mis-
match between shading normals and geometric normals should be
taken into account.

Position bounds. Then, we can obtain and check the bound of
each rational function.

1 def positional_check_R(u1m, u1M, v1m, v1M, u2p, v2p, k2, s0,
s1):↩→

2 # m: the lower bound. M: the upper bound
3 # p.fbound(q): Bernstein bound of rational function p/q
4 # p.bound(): Bernstein bound of polynomial p
5 k2 = k2.align_degree_to(u2p)
6 # Compute the bound for rational functions
7 u2m, u2M = u2p.fbound(k2)
8 v2m, v2M = v2p.fbound(k2)
9 # Compute the bound for polynomial functions
10 u2pm, u2pM = u2p.bound()
11 v2pm, v2pM = v2p.bound()
12 # suffix q means denominators
13 u2qm, u2qM = k2.bound()
14 s0m, s0M = s0.bound()
15 s1m, s1M = s1.bound()
16
17 # ... Try reciprocal if u2qm * u2qM < 0, e.g., computing

k2.fbound(u2p)↩→
18
19 # If any of the following flags is true, return

immediately↩→
20 # bad: the whole region (box) contains no valid paths
21 bad_u2 = u2qm * u2qM > 0 and (u2M < 0 or u2m > 1 or v2M <

0 or v2m > 1)↩→
22 bad_u = u1m + v1m > 1
23 bad_s = s0M < 0 or s1M < 0
24
25 # If any of the following flags is true, we are in favor

of continuing subdivisions. U_TOL is a tolerance
threshold, which we set to 1 here

↩→
↩→

26 # pbad: the region (box) contains some invalid paths
27 pbad_u2 = u2qm * u2qM > 0 and (u2m < ‐U_TOL or u2M > 1 +

U_TOL or v2M < ‐U_TOL or v2m > 1 + U_TOL)↩→
28 pbad_s = s0m < 0 or s1m < 0
29 pbad_u1 = u1M + v1M > 1 + U_TOL
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Irradiance derivation. Computing the irradiance for single reflec-
tion is straightforward. We take a more complicated case, explicit
differentiation for double refractions, for example.

1 def irradiance_explicit_TT(tseq, u1m, u1M, v1m, v1M):
2 # ... Get polynomials with derivative‐aware

approximations↩→
3 u3p_du, u3p_dv, v3p_du, v3p_dv, k3_du, k3_dv = u3p.du(),

u3p.dv(), v3p.du(), v3p.dv(), k3.du(), k3.dv()↩→
4 # ... Scale differentials using (u1m, u1M, v1m, v1M)
5
6 # We store polynomial coefficients as 6D tensors, with

the last 2D representing u, v↩→
7 # The first 4D is for the remainder variables
8 # reduce_all(p, i): reduce p to linear in u and v, and

put the new remainder variable to the i‐th dimension↩→
9 u3p_du = reduce_all(u3p_du, 0)
10 u3p_dv = reduce_all(u3p_dv, 0)
11 v3p_du = reduce_all(v3p_du, 0)
12 v3p_dv = reduce_all(v3p_dv, 0)
13 k3_du = reduce_all(k3_du, 2)
14 k3_dv = reduce_all(k3_dv, 2)
15 k3 = reduce_all(k3, 1)
16 u3p = reduce_all(u3p, 3)
17 v3p = reduce_all(v3p, 3)
18
19 # We must interleave the dimensions of different

remainder variables to keep the bound valid↩→
20 u3u1p = u3p_du * k3 ‐ k3_du * u3p
21 u3v1p = u3p_dv * k3 ‐ k3_dv * u3p
22 v3u1p = v3p_du * k3 ‐ k3_du * v3p
23 v3v1p = v3p_dv * k3 ‐ k3_dv * v3p
24 denom = k3 * k3
25
26 u3u1p = reduce_all(u3u1p, 0)
27 v3v1p = reduce_all(v3v1p, 1)
28 u3v1p = reduce_all(u3v1p, 2)
29 v3u1p = reduce_all(v3u1p, 3)
30
31 # The main part of irradiance is fp/fq
32 fq = u3u1p * v3v1p
33 fq = reduce_all(fq, 0)
34 fq1 = u3v1p * v3u1p
35 fq = fq ‐ fq1
36 fq = fq * C
37 fp = denom * denom
38 return fp, fq

Subdivision. The subdivision process can be characterized as a
breadth-first search. The criteria for pruning and subdivision are
elaborated in the preceding paragraph on position checks and im-
plementation section within the main body of the paper. During
the subdivision of a box domain, we partition it at its center along
both the 𝑢1 and 𝑣1 axes, resulting in four smaller boxes.

Bound storage. Conceptually, for each primitive tuple, we store a
bitmap of its irradiance contribution on the receiver plane.

1 # um, uM, vm, vM: the position bound
2 # val: the irradiance (upper) bound
3 def splat(um, uM, vm, vM, val):
4 # RES: resolution
5 a = max(0, min(RES, int(max(0.0, vm) * RES)))
6 b = max(0, min(RES, int(min(1.0, vM) * RES) + 1))
7 c = max(0, min(RES, int(max(0.0, um) * RES)))
8 d = max(0, min(RES, int(min(1.0, uM) * RES) + 1))
9 e = np.ones((b ‐ a, d ‐ c)) * val
10 buf[a:b, c:d] = maximum(buf[a:b, c:d], e)

However, such a dense representation easily encounters memory
issues, so we use a sparse representation, where each grid stores a
list of primitive indices and corresponding irradiance values.

BVH. We implement the Bounding Volume Hierarchy (BVH) as
a binary tree, using the longest edge of each node’s bounding box
to determine the splitting axis. The midpoint of this axis is used
to partition the node into left and right sub-trees, continuing the
recursive subdivision until a triangle is reached.

4.2 Experiment settings
We present our experiment details in Tables 1 and 2. Note that all
reported 𝛾 and 𝑆2

∗
do not include the intensity of light sources.

In other words, the actual value should be 1/𝐼0 and 𝐼20 times our
reported values, respectively. We generate reference images using
specular polynomials [Fan et al. 2024] for single-bounce scenarios
and Stochastic Progressive Photon Mapping (SPPM) [Hachisuka
and Jensen 2009] for multiple bounces, with the exception of the
Living Room scene, for which we employ Manifold Path Guiding
(MPG) [Fan et al. 2023] at very high sample rates.

Table 1. Detailed setup for rendering experiments. For each scene, we show
the path tracing depth, the threshold for the constraint checking threshold
in the solver, the maximal subdivision level, and the choice of sampling
parameters.

Scene Max Depth Threshold 𝛾 𝑆2
∗

Dragon (1 min) 10 10−5 1000 N/A
Dragon (23 min) 10 10−5 10 N/A
Plane 10 10−5 100 N/A
Sphere 5 10−5 10 N/A
Pool 5 10−5 50 N/A
Slab 5 10−6 N/A 10−4

Diamonds 20 3 × 10−6 2 N/A

Table 2. Summary of video scenes and parameters.

Scene Max Subdiv. Level 𝛾

Plane I 12 200
Plane II 12 900
Sphere 3 10
Diamonds I 3 2
Diamonds II 3 2
Slab I 1 200
Slab II 3 200
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