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Fig. 1. Rendering sharp caustics reflected by complex geometry (0.35M triangles), where existing methods perform slowly. Consequently, even if determinis-
tically searching for the complete set of admissible paths, they still produce high variance due to low sample rates. Our method samples triangles leveraging
the bounds for caustics, leading to more converged results. We visualize the irradiance bound (in the base 10 logarithmic space) summed over tuples. All
methods render single reflections only. We compare with Path Cuts [Wang et al. 2020], Specular Polynomials (SP) [Fan et al. 2024], Manifold Path Guiding
(MPG) [Fan et al. 2023], and Stochastic Progressive Photon Mapping (SPPM) [Hachisuka and Jensen 2009]. Two budgets for ours focus on equal time (32 sec
for precomputation with finer subdivisions, 23 min in total) and roughly equal quality comparisons (9 sec for precomputation, 1 min in total), respectively.

Systematically simulating specular light transport requires an exhaustive
search for triangle tuples containing admissible paths. Given the extreme
inefficiency of enumerating all combinations, we significantly reduce the
search domain by stochastically sampling such tuples. The challenge is to
design proper sampling probabilities that keep the noise level controllable.
Our key insight is that by bounding the irradiance contributed by each tri-
angle tuple at a given position, we can sample a subset of triangle tuples
with potentially high contributions. Although low-contribution tuples are
assigned a negligible probability, the overall variance remains low.
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Therefore, we derive position and irradiance bounds for caustics casted
by each triangle tuple, introducing a bounding property of rational func-
tions on a Bernstein basis. When formulating position and irradiance ex-
pressions into rational functions, we handle non-rational parts through re-
mainder variables to maintain bounding validity. Finally, we carefully de-
sign the sampling probabilities by optimizing the upper bound of the vari-
ance, expressed only using the position and irradiance bounds.

The bound-driven sampling of triangle tuples is intrinsically unbiased
even without defensive sampling. It can be combined with various unbiased
and biased root-finding techniques within a local triangle domain. Exten-
sive evaluations show that our method enables the fast and reliable render-
ing of complex caustics effects. Yet, our method is efficient for no more than
two specular vertices, where complexity grows sublinearly to the number of
triangles and linearly to that of emitters, and does not consider the Fresnel
and visibility terms. We also rely on parameters to control subdivisions.
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1 INTRODUCTION
High-frequency caustics have long been a core challenge in physically-
based rendering. To discover the set of admissible paths that sat-
isfy specular constraints, many specialized methods have been pro-
posed [Hanika et al. 2015; Jakob and Marschner 2012]. Generally,
all these methods involve a root-finding process to connect a pair
of non-specular endpoints (e.g., a point on the light source and a
diffuse shading point), but the domain they operate on differs.
While walking on the specular manifold over the whole scene

enjoys great generality [Hanika et al. 2015; Jakob and Marschner
2012; Zeltner et al. 2020], its point-sampling nature makes the con-
vergence hard to guarantee, which could sometimes produce ex-
tremely high variance in complex scenes. On the other hand, sys-
tematic approaches migrate this unbounded convergence by solv-
ing for specular paths within each tuple of triangles [Fan et al. 2024;
Walter et al. 2009; Wang et al. 2020]. Yet, their overall efficiency
largely depends on the selection of these triangle tuples. Currently,
they rely on interval arithmetics to prune non-contributing regions,
which are loose, deterministic, and without energy considerations.

Deterministic enumeration produces pixel-perfect rendering re-
sults but incurs significant computational costs. In practice, sto-
chastic sampling is crucial for achieving an efficient and unbiased
solution; however, maintaining low variance is essential to avoid
noisy results. To facilitate such efficient sampling of specular trian-
gle tuples, it is necessary to gather information on the distribution
of irradiance each triangle tuple contributes to the receiver.
Conventional approaches, such as path guiding, fit energy distri-

butions from path or photon samples. Despite their generality and
flexibility, they could encounter many pitfalls. For example, point
samples can easily miss certain parts so that the variance could
be extremely high. Besides, online training still requires a (usually
uniform) initial distribution. To our knowledge, a reliable (i.e., error-
bounded) and self-contained approach for sampling specular paths
that enjoys theoretically controllable variance is a clear gap.
Our key insight is that if we can acquire a conservative bound of

position and irradiance of caustics cast by each triangle tuple, we
can construct a stochastic estimator of the total irradiance at each
shading point with controllable variance. The core challenge here
is to efficiently obtain a correct bound as tightly as possible.
To this end, we develop a systematic framework to provide the

bounds of positions and irradiance along specular paths within a
given region. Here, the key ingredient is a rational formulation of
vertex positions and Jacobians. We can easily obtain the bounds of
their range by expressing these rational functions in the Bernstein
polynomial basis [Garloff et al. 2012; Narkawicz et al. 2012].
Unlike conventional MCmethods on point samples [Kajiya 1986;

Vorba et al. 2019; Zeltner et al. 2020], our approach operates on
functions within a finite interval. This may look complex, but arith-
metic operations in Bernstein basis can be understood as modeling
functions as Bézier surfaces and operating on their control points
[Farouki 2012], which is explainable, easy to understand, and en-
joys better numerical stability thanmonomial basis.We finally lever-
age our triangle sampling to develop a reliable and effective caus-
tics rendering pipeline, which performs up to an order of magni-
tude faster than existing unbiased sampling approaches.

In summary, our main contribution includes:
• A Bernstein bound of position and irradiance for caustics.
• A bound-driven sampler with controllable variance.
• An efficient pipeline for rendering sharp caustics.

Our current method has some limitations. Firstly, the complexity
grows rapidly as chain lengths increase. Thus, it is only feasible for
one or two bounces. Besides, subdivision is required to achieve rea-
sonably tight bounds when triangles are not small enough, which
introduces some parameters. Additionally, the convergence rate of
bound tightness is not yet guaranteed. In addition, wemake simpli-
fying assumptions during derivations. We ignore visibility and the
Fresnel term during precomputation. Also, we compute bounds for
each triangle tuple, which suffers from complexity growth sublin-
ear to the number of triangles. Lastly, we consider a single, small
light source and pure specular surfaces only. Thus, the precompu-
tation cost scales linearly to the number of light sources.

2 RELATED WORKS
Advanced sampling techniques, such as Metropolis light transport
[Veach andGuibas 1997] and path guiding [Müller et al. 2017; Vorba
et al. 2019], largely accelerate the convergence rate of Monte Carlo
rendering. Nevertheless, caustics produced by tiny light sources
and specular surfaces still pose a challenge to these local path sam-
pling techniques [Kajiya 1986; Veach 1998; Veach and Guibas 1995].
Therefore, productions [Droske et al. 2023] have traditionally uti-
lized photons [Georgiev et al. 2012; Hachisuka and Jensen 2009;
Jensen andChristensen 1995] or regularization [Kaplanyan andDachs-
bacher 2013]. However, despite their generality, these approaches
could result in unexpected bias. Thus, researchers have developed
specialized methods to unbiasedly estimate those sharp caustics.

Deterministic search for specular paths. Some early approaches
perform an exhaustive searching process to find nearly all admissi-
ble chains connecting given endpoints. Starting from Fermat’s prin-
ciple, interval arithmetic and Newton’s method are leveraged to
identify reflection paths on parametric surfaces [Mitchell and Han-
rahan 1992]. By further introducing the Implicit FunctionTheorem,
Chen and Arvo [2000] tackles endpoint perturbations of specular
paths using high-dimensional Taylor series. In more recent works,
for single-refractive specular chains on trianglemeshes,Walter et al.
[2009] introduce a spindle test based on interval arithmetic to prune
non-contributing region. Then, they employ (interval) Newton’s
method to find admissible paths. While this can be extended to ren-
dermulti-bounce glints [Wang et al. 2020], for caustics, online prun-
ing would experience performance degradation [Fan et al. 2024],
and the interval arithmetic bound could be extremely loose. This
challenge motivates us to precompute the bounds of caustics in a
tighter manner, narrowing the search domain. Furthermore, as the
number of solutions increases, enumerating all solutions is already
time-consuming, necessitating the use of stochastic sampling.

Stochastic sampling on specular manifolds. Random walks with a
Newton solver on specular manifolds enable more robust handling
of specular paths for Metropolis sampling [Jakob and Marschner
2012; Kaplanyan et al. 2014], which is then applied to a regular
Monte Carlo context [Hanika et al. 2015]. By further introducing
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Fig. 2. Overview of the precomputation pass. We trace light beams
passing through each triangle tuple and leverage their position and irra-
diance bounds to sample these triangle tuples. Note that our discussion of
irradiance is primarily about its upper bound only.

random initialization strategies togetherwith reciprocal estimators,
unbiasedness is guaranteed [Zeltner et al. 2020], albeit at the cost
of high variance. Although it is possible to eventually find all so-
lutions, the variance could be arbitrarily high [Fan et al. 2023]. In-
stead, we adopt stochastic sampling of regions (triangle tuples), ef-
fectively controlling the variance introduced by random sampling.

Analyzing the contribution of glossy triangles. For single scatter-
ing, Loubet et al. [2020] derive a closed-form approximation of a
glossy triangle’s contribution. They compute a position bound for
each triangle using samples, which is not conservative, so it relies
on path tracing to keep unbiasedness, producing visible fireflies.
Even worse, for pure specular surfaces, path tracing cannot find
caustics at all so it leads to bias. This inspires us to seek a theoreti-
cally conservative bound, leveraging the Bernstein polynomials.

Beam tracing for caustics rendering. Our method revisits the con-
cept of beam tracing [Heckbert and Hanrahan 1984], traditionally
applied to caustics rendering approximately. Watt [1990] pioneered
this manner by generating a beam of light for each specular poly-
gon and projecting it onto a receiver, defining its irradiance as pro-
portional to the area ratio of these polygons. Despite subsequent
improvements in accuracy [Shinya et al. 1987] and performance
[Iwasaki et al. 2003], they rely on heuristics that assume constant
or linear variations in directions or irradiance. Even more, actual
caustics do not necessarily form polygons on the receiver. These
limitations motivate our more accurate modeling of caustic posi-
tion and irradiance based on a rational formulation. Besides, we
only use precomputation to drive stochastic sampling in rendering.

Bernstein polynomials. TheBernstein polynomial basis [Bernstein
1912] has been widely adopted in computer-aided design to model
parametric curves and surfaces [Farouki 2012]. A significant advan-
tage is that the Bernstein coefficients of a polynomial offer valuable
insights into its behavior over a finite interval, leading to numerous
beneficial properties. In this work, we leverage a key property of
the Bernstein coefficients, which provide conservative bounds for
rational functions, demonstrating better tightness (see Fig. 4) than
conventional methods like interval arithmetic [Garloff et al. 2012].

3 MOTIVATION AND OVERVIEW
Monte Carlo rendering of caustics involves sampling specular chains
𝒙 comprised of specular vertices 𝒙1, 𝒙2, . . . , 𝒙𝑘−1, which connects
two non-specular endpoints 𝒙0 and 𝒙𝑘 . Typically, 𝒙0 lies on the

SolutionsCandidate set
SU

Universal setConfigurations

Covering the
shading point

Random 
sampling

Root-
finding

Fig. 3. Overview of the rendering pass. For a given shading point, the
triangle tuples whose position bound covers it form a set U. We aim to
sample a subset S ⊆ U. For each triangle tuple T ∈ S, we run existing
root-finding methods to solve for admissible paths within it.

light source, and 𝒙𝑘 is a non-specular shading point. Each specu-
lar vertex 𝒙𝑖 lies on a triangle1 T𝑖 . We refer to previous works for
a more gentle introduction of how this process works with a path
tracer [Fan et al. 2023; Hanika et al. 2015; Zeltner et al. 2020].

Ourmethod divides this sampling process into two separate steps:
first, sampling some tuples of triangles given endpoints, and sec-
ond, solving for all specular chains within each selected tuple T =
(T1, ...,T𝑘−1). Note that we focus on a single light source. If multi-
ple emitters are involved, they should be treated as part of the tuple
T . While existing works proposed ways to solve for paths within
T [Fan et al. 2024; Walter et al. 2009; Wang et al. 2020] (the second
step), the sampling of T (the first step) is a clear gap.

The goal of our method. We aim to sample a set of triangle tuples
given endpoints according to their contributions. This requires a
probability 𝑃T (conditioned on 𝒙𝑘 ) describing the chance we sam-
pleT .We compute this probability in a precomputation pass, which
is stored on non-specular surfaces for later use in the rendering
pass. Precomputation takes the light source, specular caustics cast-
ers, and non-specular receivers as input but is independent of the
camera. Instead of fitting from point samples that cannot preserve
all information over the whole domain, we theoretically analyze
the energy distribution of specular paths over finite intervals.

Overall pipeline. In the precomputation pass, we trace beams from
the light source passing through each tuple of specular triangles.
This process is illustrated in Fig. 2. For simplicity, we firstly con-
sider point light sources only and a specific type of specular chain,
that is, the chain length and the scattering type (reflection/refraction)
at each vertex.This allows us to parameterize paths via the barycen-
tric coordinates 𝒖1 of the first specular vertex 𝒙1. Each path inter-
sects with the receiver T𝑘 at vertex 𝒙𝑘 with barycentric coordinates
𝒖𝑘 , which we formulate as a rational function of 𝒖1.

Given a box on the domain of 𝒖1, the position bound describes
the range of 𝒖𝑘 where the corresponding paths hit the receiver,
which indicates whether we need to consider a triangle tuple T at a
shading point 𝒙𝑘 on T𝑘 . However, the contribution of an admissible
path could be small in some instances. Fortunately, we found that a
rational function can bound the irradiance contribution. Therefore,
we additionally introduce the irradiance bound that describes the

1We first assume these triangles are given and defer how to incrementally find T𝑗
given T1, ..., T𝑗−1 (for any 𝑗 > 1) to the implementation section.
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range of irradiance received at 𝒙𝑘 . These bounds are stored as (axis-
aligned) boxes in the space of 𝒖𝑘 with irradiance values.

During the final rendering (Fig. 3), for a non-specular shading
point (generated by, for example, path tracing), we query the boxes
that cover this shading point and sample a subset of correspond-
ing triangles according to their irradiance bound.We determine the
sampling probability by optimizing an upper bound of variance.
All these bounds stem from the range bound of functions over a

finite domain. Due to the availability of rational formulations, we
obtain such bounds utilizing the Bernstein polynomials.

4 BOUNDS FOR SPECULAR PATHS
In this section, we aim to acquire a conservative bound of the ir-
radiance distribution of caustics. We first introduce a property of
Bernstein polynomials [Farouki 2012], which enables a piecewise
constant approximation of any rational function.

4.1 Bernstein bound for rational functions
The Bernstein basis for multivariate functions 𝑝 (𝒙) over 𝒙 =
(𝑥1, ..., 𝑥𝑚) ∈ U𝑚 = [0, 1]𝑚 are polynomials defined as

𝐵𝒊,𝒏 (𝒙) =
𝑚∏
𝑗=1

(
𝑛 𝑗
𝑖 𝑗

)
𝑥
𝑖 𝑗
𝑗 (1 − 𝑥 𝑗 )

𝑛 𝑗−𝑖 𝑗 , (1)

where
(𝑛 𝑗

𝑖 𝑗

)
is the binomial coefficient, 𝒏 = (𝑛1, ..., 𝑛𝑚) is the degree

of the polynomial, 𝒊 = (𝑖1, ..., 𝑖𝑚) is the index of basis, and 𝑗 denotes
the index of dimension, for all 𝑗 ∈ [1,𝑚], 𝑖 𝑗 ∈ [0, 𝑛 𝑗 ]. An essential
property of Bernstein polynomials is that we can bound the range
using its coefficients, which also generalizes to rational functions.
Specifically, consider a rational function 𝑓 (𝒙) = 𝑝 (𝒙 )

𝑞 (𝒙 ) expressed in
Bernstein coefficients 𝑏 𝒊 (𝑝) and 𝑏 𝒊 (𝑞) in the same degree:

𝑝 (𝒙) =
𝑛1∑
𝑖1=0

· · ·
𝑛𝑚∑
𝑖𝑚=0

𝑏 𝒊 (𝑝)𝐵𝒊,𝒏 (𝒙) (2)

and similar for 𝑞(𝒙). Assuming that all 𝑏𝑖 (𝑞) have the same sign
and are non-zero, the minimal and maximal coefficient ratios can
bound2 the range of the function [Narkawicz et al. 2012]:

𝑛1
min
𝑖1=0

. . .
𝑛𝑚
min
𝑖𝑚=0

𝑏 𝒊 (𝑝)
𝑏 𝒊 (𝑞)

= 𝑓 ≤ 𝑓 (𝒙) ≤ 𝑓 =
𝑛1
max
𝑖1=0

. . .
𝑛𝑚
max
𝑖𝑚=0

𝑏 𝒊 (𝑝)
𝑏 𝒊 (𝑞)

. (3)

The above 𝑓 (𝑥) corresponds to the barycentric coordinates of the
receiver vertex 𝒖𝑘 (𝒖1) and the irradiance 𝐸𝑘 (𝒖1) received there; we
will present their detailed formulation in Secs. 4.3 and 4.4. In these
cases, the restrictions on the denominator𝑞 are not always satisfied.
When not all 𝑏 𝒊 (𝑞) have the same sign, we consider the reciprocal
of 𝑓 (𝒙) so that if all 𝑏 𝒊 (𝑝) have the same sign, we can still get a
valid bound, thoughmay be separated into two intervals. If both are
unsatisfied, the result bound is the universal set (−∞, +∞), which
typically occurs near grazing angles and focal points.
2 To explain the high-level intuition that why Bernstein bounds are tighter than in-
terval counterparts, we regard interval arithmetic as always using independent vari-
ables for different operands. For instance, suppose we are computing the bound of
𝑓 (𝑥 ) = 𝑔 (𝑥 )ℎ (𝑥 ) in [0, 1], with 𝑔 (𝑥 ) = 𝑥 and ℎ (𝑥 ) = 4 − 𝑥 . Using interval arith-
metic, we obtain [0, 1] × [3, 4] = [0, 4]. This is because it completely ignores the
correlation, effectively treating it as 𝑥 (4 − 𝑦) with two independent variables 𝑥 and
𝑦. Instead, polynomial operations keep correlations due to the common variable 𝑥 . As
we obtain Bernstein coefficients 𝑏0 = 0, 𝑏1 = 2, 𝑏2 = 3, we get a tighter bound [0, 3].

Table 1. List of important symbols.

Symbol Description

T𝑘 Receiver triangle
T = (T1, ..., T𝑘−1 ) Specular triangle tuple

𝒙0 Position of the point light
𝒙 = (𝒙1, . . . , 𝒙𝑘−1 ) Position of the specular vertices
𝒙𝑘 Position of the shading point
𝒏𝑖 Un-normalized interpolated normal of 𝒙𝑖
𝒅𝑖 Position difference of vertices 𝒙𝑖+1 and 𝒙𝑖
𝒖𝑖 = (𝑢𝑖 , 𝑣𝑖 ) Barycentric coordinate of 𝒙𝑖
𝒑𝑖,0, 𝒑𝑖,1, 𝒑𝑖,2 Vertex positions
𝒆𝑖,1, 𝒆𝑖,2 Vector of triangle edges
𝒏𝑖,0,𝒏𝑖,1,𝒏𝑖,2 Vertex normals

𝐸𝑘 (𝒖1 ) Path’s irradiance received at 𝒙𝑘
𝐸 (T, 𝒖𝑘 , T𝑘 ) Tuple’s irradiance received at 𝒙𝑘
𝑓 , 𝑓 Lower/upper bound of function 𝑓 ’s range

A constant bound with substantial internal variation is intrinsi-
cally loose. Fortunately, the Bernstein bound of polynomials enjoys
quadratic convergence with respect to the length of the interval
[Garloff 1986], so we can also improve the bound of rational func-
tions via subdivisions [Narkawicz et al. 2012]. This motivates us to
use a piecewise constant bound of the function, which acts as a
piecewise constant approximation of the function. The number of
pieces controls the balance between tightness and computational
cost. As the number of pieces tends to infinity, the bound converges
to the actual value of the functions. Thus, the infinite bound is a
small portion after proper subdivisions, as shown in Figs. 1 and 13.

4.2 Bounds in specular light transport
Now, we apply the bounding property of Bernstein polynomials to
specular light transport. Given a triangle tuple T and a box 𝑼1 =
[𝑢1, 𝑢1] × [𝑣1, 𝑣1], we define the position bound 𝑼𝑘 = [𝑢𝑘 , 𝑢𝑘 ] ×
[𝑣𝑘 , 𝑣𝑘 ] as a box covering the range of 𝒖𝑘 (𝒖1) on the receiver T𝑘 :

𝑢𝑘 ≤ inf
𝒖1∈𝑼1

𝑢𝑘 (𝒖1), 𝑢𝑘 ≥ sup
𝒖1∈𝑼1

𝑢𝑘 (𝒖1). (4)

The same applies to 𝑣𝑘 and 𝑣𝑘 . Similarly, the irradiance bound is
the interval 𝑬𝑘 = [𝐸𝑘 , 𝐸𝑘 ] that covers the range of 𝐸𝑘 (𝒖1). Note
that all these quantities depend on T and T𝑘 ; we omit them for
simplicity. We summarize important symbols in Table 1. Note that
throughout this paper, we use 𝑓 and 𝑓 for the bound we compute.
It differs from the supremum, infimum, and range of a function.

We compute these bounds leveraging the aforementioned ratios
of Bernstein coefficients. For instance,

𝑢𝑘 =
𝑛1
min
𝑖1=0

. . .
𝑛𝑚
min
𝑖𝑚=0

𝑏𝑢𝒊 (𝑝)
𝑏𝑢𝒊 (𝑞)

, 𝑢𝑘 =
𝑛1
max
𝑖1=0

. . .
𝑛𝑚
max
𝑖𝑚=0

𝑏𝑢𝒊 (𝑝)
𝑏𝑢𝒊 (𝑞)

. (5)

Here, 𝑏𝑢𝒊 refers to the Bernstein coefficients of 𝑢𝑘 (𝒖1). Likewise,
𝑣𝑘 , 𝑣𝑘 and 𝐸𝑘 , 𝐸𝑘 are also computed from the Bernstein coefficients
of 𝑣𝑘 (𝒖1) and𝐸𝑘 (𝒖1), respectively. Nevertheless, the aforementioned
bounding property onlyworks for rational functions, which requires
formulating the coordinates 𝒖𝑘 (𝒖1) and irradiance 𝐸𝑘 (𝒖1) into ra-
tional functions while keeping the bound valid.
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Fig. 4. Visualizing the bound of caustics cast by a single triangle reflec-
tor. We show the bound and its ratio with reference in the base 10 logarith-
mic space. Note that the axes are barycentric coordinates𝑢𝑘 and 𝑣𝑘 on the
receiver. Thus, the position bounds of different pieces may overlap. Top:
Our bound is tighter than interval arithmetics [Wang et al. 2020] in both
an equal number of pieces and equal time. Ours computes 50 pieces while
interval arithmetic computes 4K pieces in equal time. Bottom: Utilizing
500 uniformly sampled paths (in roughly equal time) to fit irradiance dis-
tributions (Histogram) like path guiding [Jensen 1995] or use the range of
samples as bounds (Sample-Based) [Loubet et al. 2020] are not conserva-
tive and could result in fireflies or bias in rendering.

4.3 Rational formulation of vertex positions
Our rational formulation of vertex positions (coordinates) builds
upon rational coordinate mapping between vertices in a specular
chain [Fan et al. 2024]. Here, we briefly review the necessary for-
mulas and refer to the original paper for derivation.

Rational coordinate mapping. Formally, we use the barycentric
coordinates 𝒖𝑖 = (𝑢𝑖 , 𝑣𝑖 )⊤ to represent the vertex positions, nor-
mals, and differences between consecutive vertices:

𝒙𝑖 = 𝒑𝑖,0 + 𝑢𝑖 (𝒑𝑖,1 − 𝒑𝑖,0) + 𝑣𝑖 (𝒑𝑖,2 − 𝒑𝑖,0), (6)

𝒏𝑖 = 𝒏𝑖,0 + 𝑢𝑖 (𝒏𝑖,1 − 𝒏𝑖,0) + 𝑣𝑖 (𝒏𝑖,2 − 𝒏𝑖,0), (7)

𝒅𝑖 = 𝒙𝑖+1 − 𝒙𝑖 . (8)

Note that 𝒏𝑖 and 𝒅𝑖 are un-normalized. All these expressions are
functions on 𝒖1. For simplicity, we omit the function’s variables.
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Fig. 5. With remainder variables, we correctly bound the range of
√
𝛽 ,

though looser than the proper range (left). Note that the actual range of 𝛽
is smaller, so the bound could be tighter (right).

Each vertex can be represented by its preceding vertex’s coordi-
nates [Möller and Trumbore 1997]:

𝒖𝑖+1 =

(
(𝒅𝑖 × 𝒆𝑖+1,2) · (𝒙𝑖 − 𝒑𝑖+1,0)
(𝒅𝑖 × 𝒆𝑖+1,2) · 𝒆𝑖+1,1

,
((𝒙𝑖 − 𝒑𝑖+1,0) × 𝒆𝑖+1,1) · 𝒅𝑖
(𝒅𝑖 × 𝒆𝑖+1,2) · 𝒆𝑖+1,1

)⊤
.

(9)
Here, 𝒅𝑖 is a scaled version of 𝒅𝑖 , which is determined by the scat-
tering type at 𝒙𝑖 . We define 𝒆𝑖,1 = 𝒑𝑖,1 − 𝒑𝑖,0 and similar for 𝒆𝑖,2.
The (un-normalized) outgoing direction at 𝒙𝑖 is

𝒅𝑖 =

{
(𝒏𝑖 · 𝒏𝑖 )𝒅𝑖−1 − 2(𝒅𝑖−1 · 𝒏𝑖 )𝒏𝑖 , for reflection
𝜂′𝑖 ((𝒏𝑖 · 𝒏𝑖 )𝒅𝑖−1 − (𝒅𝑖−1 · 𝒏𝑖 )𝒏𝑖 ) −

√
𝛽𝑖𝒏𝑖 , for refraction

(10)
with 𝜂′𝑖 being the ratio of index of refractions and

𝛽𝑖 = (1 − 𝜂′2𝑖 ) (𝒏𝑖 · 𝒏𝑖 ) (𝒅𝑖−1 · 𝒅𝑖−1) + 𝜂
′2
𝑖 (𝒅𝑖−1 · 𝒏𝑖 )

2 . (11)

The square root is not rational. Specular polynomials handle it by
introducing a precomputed piecewise rational approximant [Fan
et al. 2024]. However, this approximation introduces error and thus
could lead to an invalid (i.e., not conservative) bound.

Fortunately, we can correct it through auxiliary remainder vari-
ables that model the approximation error.

Remainder variables. We introduce a remainder variable 𝜉𝑖 for
each refractive vertex to compensate for the difference between√
𝛽𝑖 and a rational approximation 𝑟 (𝛽𝑖 ). Now we can safely replace

the original occurrence of
√
𝛽𝑖 with a rational function

𝑟 (𝛽𝑖 , 𝜉𝑖 ) = 𝑟 (𝛽𝑖 ) + (1 − 𝜉𝑖 )𝛿𝑖 + 𝜉𝑖𝛿𝑖 , (12)

where 𝛿𝑖 and 𝛿𝑖 is the bound of the approximation error 𝛿𝑖 (𝒖𝑖 ) =√
𝛽𝑖 −𝑟 (𝛽𝑖 ) . Note that 𝜉𝑖 is independent of 𝛽𝑖 . This introduces an ex-

tra dimension and corrects the bound, though it may become loose.
To guarantee the bound will converge to the true value as the

domain of 𝒖1 gets infinitely small, we generate the approximation
𝑟 (𝛽𝑖 ) on the fly, leveraging the range bound of 𝛽𝑖 on the current
domain. Specifically, we use a linear approximation (Fig. 5):

𝑟 (𝛽𝑖 ) = 𝑎𝛽𝑖 + 𝑏. (13)

Please refer to the supplemental document for the proof and the
closed-form calculation of parameters 𝑎,𝑏, 𝛿𝑖 , and 𝛿𝑖 .
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dΩ0

d𝐴1

d𝐴𝑘𝒙𝑘

Fig. 6. Illustration of the generalized geometric term (GGT). Light
emitted in the differential solid angle dΩ0 passing through specular sur-
faces finally hits the differential area d𝐴𝑘 on the receiver. Note that we
use dΩ0 instead of the projected solid angle dΩ⊥0 because we consider point
light sources that emit intensity uniformly in different directions.

Until now, by substituting Eq. (9) into Eq. (3), it is already possible
to obtain a conservative position bound of specular vertices. Nev-
ertheless, efficient sampling of triangles also requires additional in-
formation on their irradiance 𝐸𝑘 .

4.4 Rational formulation of irradiance
Motivation. Analyzing irradiance enables us to sample triangles

based on their contributions. It is particularly beneficial when spe-
cific triangles contribute minimal energy. After all, a nearly zero
contribution is effectively equivalent to having no solution. An ir-
radiance bound allows us to assign them a correspondingly low
probability and focus more on paths with high contributions.

Overview. The irradiance carried by the path 𝒙 received at 𝒙𝑘
comprises several independent factors [Jakob and Marschner 2012;
Walter et al. 2009; Wang et al. 2020]:

𝐸𝑘 (𝒖1) = 𝐸𝑘 (𝒙) = 𝐼0
dΩ0

d𝐴𝑘
𝑉 (𝒙)𝐹 (𝒙). (14)

We parameterize by 𝒖1 since 𝒙 is determined by 𝒖1 when consid-
ering a specific chain type. Here, 𝐼0 is the emitter’s intensity3, dΩ0
refers to the differential solid angle at the point light source 𝒙0,
and d𝐴𝑘 the differential area at vertex 𝒙𝑘 . 𝑉 represents the visibil-
ity term, and 𝐹 is the product of Fresnel terms at each vertex. dΩ0

d𝐴𝑘

is the generalized geometric term (GGT). As illustrated in Fig. 6, it
describes the solid angular measure of emitted flux concentrated
into a unit area on the receiver. For simplicity, we ignore 𝐹 and 𝑉
in the discussion since they are no greater than 1. Thus, the upper
bound of irradiance is still correct. We expand dΩ0

d𝐴𝑘
using the chain

rule, which is similar to previous works [Kaplanyan et al. 2014]:

dΩ0

d𝐴𝑘
=

dΩ0

d𝐴1

���� 𝜕𝒙1𝜕𝒖1

���� ���� 𝜕𝒖1𝜕𝒖𝑘

���� ���� 𝜕𝒖𝑘𝜕𝒙𝑘

���� . (15)

We obtain rational expressions of these four terms separately. The
key part is the Jacobian

��� 𝜕𝒖1
𝜕𝒖𝑘

���; we discuss the remaining parts in
the supplemental document. Here, we provide two approaches to
obtain rational forms of

��� 𝜕𝒖1
𝜕𝒖𝑘

���.
3Since 𝐼0 is completely scene-dependent, we ignore it (i.e., simply assuming 𝐼0 = 1)
across all the irradiance visualizations.

ReferenceImplicitExplicit

2

1

0

-1

-2

-3

Fig. 7. The irradiance bound using explicit differentiation is extremely loose
for cases involving nearly total internal reflection, even using 104 pieces.
Fortunately, the implicit differentiation succeeds.We show log10 (𝐸𝑘 ) . Note
that the axes are barycentric coordinates 𝑢𝑘 and 𝑣𝑘 on the receiver.

Explicit differentiation. We initiate by computing the reciprocal
using the form invariance of first-order differentials:���� 𝜕𝒖1𝜕𝒖𝑘

���� = 1��� 𝜕𝒖𝑘𝜕𝒖1

��� = 1����� 𝜕𝑢𝑘𝜕𝑢1

𝜕𝑢𝑘
𝜕𝑣1

𝜕𝑣𝑘
𝜕𝑢1

𝜕𝑣𝑘
𝜕𝑣1

�����
. (16)

This only requires the forward derivatives of the position expres-
sions derived in Section 4.3. After all, the coefficients of a polyno-
mial’s partial derivative are trivially a linear combination of the
original polynomial’s coefficients, which is easy to compute. We ac-
quire the final irradiance bound by substituting Eq. (15) into Eq. (3).
Note that the remainder variables in the square root approximation
only guarantee the correctness of the position bound, so we use a
derivative-aware approximation, which compensates not only the
primal values but also the derivatives to 𝛽𝑖 ; see the supplemental
document for details.

Unfortunately, when the refracted angle is near 𝜋/2, 𝛽𝑖 tends to
zero. Hence, the relative approximation error tends to infinity, so
the bound becomes extremely loose (Fig. 7). This motivates us to
directly express

��� 𝜕𝒖1
𝜕𝒖𝑘

��� using the derivatives of implicit functions.

Implicit differentiation. Implicit differentiation does not require
representing 𝒖𝑘 as a rational function of 𝒖1, avoiding approxima-
tions on the refraction angle at a particular vertex 𝒙𝑘 .

For refraction, we express the specular constraint on 𝒙𝑘−1 as two
polynomial functions 𝐹 and 𝐺 in variables 𝒖1 and 𝒖𝑘 . We use mul-
tivariate specular polynomials4 as 𝐹 and 𝐺 . By solving

𝐹𝑢𝑘 + 𝐹𝑢1

𝜕𝑢1
𝜕𝑢𝑘
+ 𝐹𝑣1

𝜕𝑣1
𝜕𝑢𝑘

= 0,

𝐺𝑢𝑘 +𝐺𝑢1

𝜕𝑢1
𝜕𝑢𝑘
+𝐺𝑣1

𝜕𝑣1
𝜕𝑢𝑘

= 0,
(18)

we obtain

𝜕𝑢1
𝜕𝑢𝑘

= −
𝜕𝐹
𝜕𝑢𝑘

𝜕𝐺
𝜕𝑣1
− 𝜕𝐹

𝜕𝑣1
𝜕𝐺
𝜕𝑢𝑘

𝜕𝐹
𝜕𝑢1

𝜕𝐺
𝜕𝑣1
− 𝜕𝐹

𝜕𝑣1
𝜕𝐺
𝜕𝑢1

,
𝜕𝑣1
𝜕𝑢𝑘

=
𝜕𝐹
𝜕𝑢𝑘

𝜕𝐺
𝜕𝑢1
− 𝜕𝐹

𝜕𝑢1

𝜕𝐺
𝜕𝑢𝑘

𝜕𝐹
𝜕𝑢1

𝜕𝐺
𝜕𝑣1
− 𝜕𝐹

𝜕𝑣1
𝜕𝐺
𝜕𝑢1

. (19)

4The constraints 𝐹 and𝐺 are polynomials in both 𝒖1 and 𝒖𝑘 [Fan et al. 2024]:{
𝐹 = 𝒅2

𝑘−1 ( (𝒅𝑘−2 × 𝒏𝑘−1 ) · 𝒃 )2 − 𝜂2𝒅2
𝑘−2 ( (𝒅𝑘−1 × 𝒏𝑘−1 ) · 𝒃 )2 ,

𝐺 = (𝒅𝑘−2 × 𝒏𝑘−1 ) · 𝒅𝑘−1 .
(17)

Here, 𝒃 represents an arbitrary vector with a non-zero norm, and 𝜂 is the ratio of the
index of refraction. To avoid degenerated cases, we use the intersection of bounds com-
puted using two different 𝒃 vectors 𝒃1 = (1, 0, 0)⊤ and 𝒃2 = (0, 1, 0)⊤ , respectively.
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Fig. 8. The number of solutions per tuple. In the Plane scene, nearly all
tuples have no more than 1 solutions, so we set𝑚 ≤ 1 for rendering exper-
iments. Left: the maximal number of solutions per tuple for each shading
point. Right: distributions of the number of solutions per tuple.

The same goes for 𝑣𝑘 .The resulting Jacobian
��� 𝜕𝒖1
𝜕𝒖𝑘

��� = ����� 𝜕𝑢1
𝜕𝑢𝑘

𝜕𝑢1
𝜕𝑣𝑘

𝜕𝑣1
𝜕𝑢𝑘

𝜕𝑣1
𝜕𝑣𝑘

����� in-
cludes both 𝒖1 and 𝒖𝑘 . Directly substituting 𝒖𝑘 using an expression
of 𝒖1 results in extremely high degrees. We instead treat 𝒖1 and 𝒖𝑘
as independent variableswithin the position bound, butwe still sub-
stitute 𝒖2, ..., 𝒖𝑘−1 with rational functions in 𝒖1. This step extends
a 2D manifold to its 4D superset, so the bound may become looser
but still valid. Finally, we reach the irradiance bound by substitut-
ing Eq. (15) into Eq. (3). We present the degree of final expressions
and complexity analysis in the supplemental document.

4.5 Total irradiance contribution of a triangle tuple
The above-discussed irradiance 𝐸𝑘 (𝒖1) pertains to an admissible
specular path. Since we aim at sampling triangle tuples, we need to
know the total irradiance contribution 𝐸 (T , 𝒖𝑘 ,T𝑘 ) of each tuple, a
summation over all admissible paths’ contribution within T :

𝐸 (T , 𝒖𝑘 ,T𝑘 ) =
∑

𝒖𝑘=𝒖𝑘 (𝒖1 )
𝐸𝑘 (𝒖1). (20)

𝐸 (T , 𝒖𝑘 ,T𝑘 ) is no greater than𝑚 times the path’s irradiance bound.
Here,𝑚 denotes the number of solutions within T . For 𝒖𝑘 not cov-
ered by the position bound,𝑚 must be zero. For 𝒖𝑘 covered by the
position bound, following the common assumption that atmost one
solution exists when triangles are small, we set𝑚 = 1 in our exper-
iments5. We show an example in Fig. 8.
When considering subdivisions on the domain of 𝒖1, we should

use the maximum irradiance bound among the pieces whose posi-
tion bounds cover the shading point instead. Suppose the union of
disjoint rectangles 𝑼 1

1 , . . . , 𝑼
𝑛
1 covers U2. Each 𝑼 𝑖

1 corresponds to
a position bound 𝑼 𝑖

𝑘
and an irradiance bound 𝑬𝑖

𝑘
. We can give an

upper bound of the total irradiance contribution:

𝐸 (T , 𝒖𝑘 ,T𝑘 ) ≤ 𝐸 (T , 𝒖𝑘 ,T𝑘 ) =𝑚 max
𝒖𝑘 ∈𝑼 𝑖

𝑘

𝐸
𝑖
𝑘 . (21)

Note that the symbol 𝐸 refers to per-path irradiance bound, while
𝐸 is per-tuple. See proofs and detailed discussions in the supple-
mental document. Lastly, we showcase two 2D examples to demon-
strate the overall process of the precomputation pass in Fig. 9.
5Even if𝑚 exceeds our assumption, it will not introduce bias. However, the variance
may increase beyond expected levels.𝑚 is provably finite for triangle meshes [Wang
et al. 2020]. A theoretically strict upper bound of𝑚 can be derived from the degree of
specular polynomials, but is too loose in practice.

5 BOUND-DRIVEN SAMPLING OF TRIANGLE TUPLES
The previously computed bound provides substantial information
about caustics, which we now leverage to sample triangle tuples
effectively. Our discussion in this section is under a specific shading
point 𝒙𝑘 , which determines T𝑘 and 𝒖𝑘 , so we omit these symbols
for simplicity. For instance, 𝐸 (T ) is the shorthand of 𝐸 (T , 𝒖𝑘 ,T𝑘 ),
which represents the irradiance contributed by T at 𝒙𝑘 .

5.1 Problem definition
There is a finite set U of different triangle tuples T whose position
bounds cover the given shading point 𝒙𝑘 . Our goal is to estimate
the sum of irradiance 𝐸 (T ) over all triangle tuples T ∈ U, i.e.,

𝐸 =
∑
T∈U

𝐸 (T ) . (22)

For simplicity, we discuss the diffuse receiver, where the sum 𝐸 de-
cides outgoing radiance 𝐿 = 𝜌𝐸, with 𝜌 being the albedo. For glossy
shading points, a product with the BSDF is required.

We aim to sample a candidate triangle tuple set S ⊆ U. Af-
ter that, we solve for admissible paths within each T ∈ S and sum
their contributions (dividing the corresponding sampling probabil-
ity). Here, the key design choice is determining the number of tu-
ples to sample and the probability with which each tuple is chosen.

5.2 Sampling a single triangle tuple
A straightforward way is to importance sample [Veach 1998] tri-
angle tuples proportional to their irradiance contributions. Theo-
retically, this is the optimal probability for a one-sample estimator.
However, the true irradiance of each triangle tuple is intractable;
we can only use the bound instead:

𝑃1 (T ) =
𝐸 (T )∑
T′∈U 𝐸 (T ′)

. (23)

Nevertheless, 𝐸 (T ) is sometimes substantially higher than 𝐸 (T )
due to a loose bound (either position or irradiance). This could lead
to an unmanageable increase in variance.

Practically, there is an intrinsic trade-off among validity, tight-
ness, and computational cost of bounds. This motivates us to resort
to a new category of estimators that possibly sample multiple tu-
ples to guarantee the variance is controllable.

5.3 Sampling multiple triangle tuples
Instead of considering which tuple is sampled, we allowmultiple

tuples to be selected and evaluate the decision to choose each tuple.
This effectively unifies importance sampling and selective activa-
tion (i.e., deciding where to enable specular path sampling) [Fan
et al. 2023; Loubet et al. 2020] in the same framework.

Formally, we introduce 𝑃T , which represents the discrete prob-
ability that T is chosen, i.e., 𝑃T = P[T ∈ S]. Note that 𝑃T is not
necessarily normalized, i.e.,

∑
T∈U 𝑃T ≠ 1. The estimator

⟨𝐸⟩ =
∑
T∈S

𝐸 (T )
𝑃T

(24)

is unbiased as long as 𝑃T > 0 for all T that satisfies 𝐸 (T ) > 0. We
summarize the sampling process in Algorithm 1.
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Fig. 9. 2D examples. (a) The incident light (yellow) hits a specular triangle (orange, with interpolated normals). Reflected rays (blue) hit the receiver (black,
bottom). (b)We show reference as solid curves and our bound as a shaded region.We perform subdivision on the domain of𝑢1 to acquire a piecewise constant
bound. (c) At the singular point where d𝑢𝑘

d𝑢1
= 0, the irradiance tends to infinity, so we cannot obtain a finite bound. (d) A joint use of position and irradiance

bound for bounding the per-path irradiance contribution at any position. Note the positional overlap and the irradiance singularity in the bottom example.
(e) Eq. (20) and Eq. (21) provide the reference and bound of irradiance per tuple, respectively. Here, we set𝑚 = 1 (top) and𝑚 = 2 (bottom). Note that 𝑢1 is
hidden by the transform from (b) and (c) to (d), thus it is never stored. The final storage for each T only involves 𝑢𝑘 and 𝐸𝑘 .

Algorithm 1 Estimator that samples multiple triangle tuples
Input: Probabilities 𝑃T for each triangle tuple T ∈ U
Output: Selected tuple set S, estimated irradiance ⟨𝐸⟩
1: S← ∅, ⟨𝐸⟩ ← 0
2: for T ∈ U do
3: 𝑟 ← rng() ⊲ Generate a random number in [0, 1]
4: if 𝑟 < 𝑃T then
5: S← S ∪ {T} ⊲ Select a triangle tuple T
6: ⟨𝐸⟩ ← ⟨𝐸⟩ + 𝐸 (T)

𝑃T
⊲ Add the contribution of all solutions in T

7: end if
8: end for
9: return S, ⟨𝐸⟩

The time complexity of Algorithm 1 is O(|U|). Such a brute-force
implementation alreadyworks since the root-finding process is com-
plex. Yet, when U is substantially larger than S, we can reduce the
complexity to O(|S| log(|U|)). We pack tuples into groups (denoted
as B) whose sum of probabilities is no greater than one as a classical
bin-packing problem. In each group, we simply importance sample
one tuple. We use the first-fit greedy algorithm with O(|U|) time
preprocessing and a guaranteed approximation ratio of 2.

As an important property, variance measures the quality of sam-
pling. A significant benefit of our multi-sample estimator is that
we can represent the upper bound of the (population) variance 𝜎2
(a.k.a. V[⟨𝐸⟩]) only in terms of 𝐸 (T ), 𝑃T , and a constant 𝜇:

𝜎2 = 𝜇2 − 𝜇2 ≤ 𝜇2, 𝜇2 ≤ 𝜇2 =
∑
T∈U

𝐸2 (T )
𝑃T

. (25)

Here, 𝜇 denotes themean value, and 𝜇2 is the second-ordermoment.

The irradiance bound 𝐸 (T ) is precomputed and fixed now, so
𝜇2 is controlled only by 𝑃T . A good design of 𝑃T should have a
relatively low variance. Thus, we determine 𝑃T by optimizing 𝜇2.

5.4 Optimized sampling probabilities
We aim to minimize 𝜇2 given the expected number of candidates
𝑊 = E[|S|]. Note that we first treat𝑊 as a given parameter. Since
S ⊆ U, we assume𝑊 ≤ |U|. This is a nonlinear optimization with
linear equality and inequality constraints:

min
𝑃

∑
T∈U

𝐸2 (T )
𝑃T

,

s.t.
∑
T∈U

𝑃T =𝑊,

0 ≤ 𝑃T ≤ 1, ∀T ∈ U.

(26)

According to the Karush-Kuhn-Tucker (KKT) conditions, we solve
the above optimization using the Lagrangian with Lagrange multi-
pliers 𝜆 and 𝜆T :

L =
∑
T∈U

𝐸2 (T )
𝑃T

− 𝜆
( ∑
T∈U

𝑃T −𝑊
)
−

∑
T∈U

𝜆T (𝑃T − 1) (27)

and obtain that for eachT , either 𝑃T = 1 or 𝑃T = 𝛾𝐸 (T ) is satisfied.
Therefore, we reach the final probability

𝑃T = min
(
𝛾𝐸 (T ), 1

)
(28)

with 𝛾 being a constant parameter. Note that the above equation
naturally satisfies 𝑃T ≥ 0, so we can ignore this constraint. In con-
trast, the condition 𝑃T ≤ 1 must be considered explicitly as a key
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Plane (25 sec)

Reference Ours One-sample Uniform P=0.04 Enumerate

RelMSE, SPP 0.0010, 33 0.0164, 54 0.0063, 16 0.0085, 1

Fig. 10. Validations on different sampling schemes.While it is possible
to use the position bound only to render a pixel-perfect image (Enumerate),
it increases the runtime cost for each spp, leading to high variance in equal
time comparison and obvious aliasing artifacts. Uniformly assigning 𝑃 in-
troduces visible noise. Conventional importance sampling (One-sample)
easily causes extremely high variance when the bound is loose. Our multi-
sample estimator leveraging the irradiance bound performs the best.

difference from continuous cases [Rath et al. 2020]. As a summary,
we compare different estimators we discussed in Fig. 10.

Additionally, the impact of the parameter𝛾 is intuitive, as shown
in Fig. 11. While it is possible to let users specify 𝛾 , obtaining it
automatically from the expected number of samples𝑊 or variance
is also feasible since there is a one-to-one mapping between these
parameters. See the supplemental document for details.

6 EVALUATION
We implement our method in Mitsuba 0.6 [Jakob 2010]. The pre-
computation partially utilizes the Numba JIT compiler. All timings
are conducted on an Intel Core i9-13900KF processor.

6.1 Implementation
The supplemental document provides detailed algorithms, complex-
ity analysis, and pseudo-code snippets. We briefly outline some im-
portant design choices here.

Tuple construction. In precomputation, we construct triangle tu-
ples by extending triangles at the end of a given prefix. For T1, ...,T𝑖 ,
we compute the bound of 𝒙𝑖 and 𝒅𝑖 . Then, we traverse the bound-
ing volume hierarchy (BVH) to find all possible T𝑖+1 according to
whether the bound of (𝒙𝑖+1 − 𝒙𝑖 ) × 𝒅𝑖 covers zero.

Bound storage. We rasterize bounds into a grid parameterized by
the texture coordinates. Each cell stores a list containing several
pairs of irradiance bound 𝐸 (T , 𝒖𝑘 ,T𝑘 ) and triangle indices of T .
We splat the irradiance bound to each cell intersecting with the
position bound. We choose uniform 512 × 512 grids for simplicity.
During rendering, for each shading point, we use its coordinate as
𝒖𝑘 to query the grid on texture space, returning a list of tuples.

Domain subdivision. Our bound is valid but loose when the trian-
gles are large, leading to slow rendering. To compute the piecewise
constant bound, we recursively subdivide the box domain of 𝒖1 into
four boxes at the midpoint. The subdivision stops when
• the area of 𝑼𝑘 is less than 𝜎 = 10−4,

γ = 3 γ = 30 γ = 300

Time 0.5x, 0.0723 Time 1.0x, 0.0088 Time 1.6x, 0.0051

Fig. 11. The impact of the sampling parameter𝛾 . All methods use 4 spp
for path tracing. Higher gamma reduces variance by increasing sampling
probability. Notably, the probability easily reaches 1 (thus no variance) for
high-energy tuples, while noise still persists for low-energy ones.

• the ratio 𝐸𝑘/𝐸𝑘 is smaller than a threshold6 𝛼 , or
• the subdivision depth reaches a limit that varies among scenes.

Note that we do not subdivide T2, . . . T𝑘 , and the domain subdivi-
sion process is completely optional. Again, for different pieces af-
ter subdivisions, their domains (i.e., the range of 𝒖1) are completely
disjoint, but position bounds on 𝒖𝑘 may overlap with each other.

Domain initialization. For each triangle tuple, the effective do-
main of 𝒖1 is usually smaller than U2. Therefore, for each T , we
first compute the bound of 𝒖1 where the corresponding 𝒖𝑘 ∈ U2,
implemented using a recursive subdivision of at most 100 pieces.

Degree reduction. We found the numerical stability and complex-
ity become infeasible when the degree exceeds a certain threshold,
e.g., 40. Thus, we convert these high-degree polynomials into low-
degree ones and add a new remainder variable to maintain bound-
ing validity. Specifically, we fit low-degree approximants using lin-
ear regression based on singular-value decomposition. Each reduc-
tion also eliminates all existing remainder variables.

Area light sources. Our method easily generalizes to area light
sources by incorporating two additional variables in the expression
for 𝒙0. In Fig. 12, we present a 2D example for illustration.

6We set the approximation ratio 𝛼 to 2 for single scattering and 10 for multiple ones.

−1 0 1
G

−1

0

1

~

0.0 0.1 0.2
D2

0

10

20

dD1
dD2

Z = 0.00
Z = 0.03
Z = 0.07
Z = 0.10

Fig. 12. Handling area light sources. We introduce an extra variable 𝜁
to represent the position along the line light source. The rational functions
have two variables 𝑢1 and 𝜁 . We succeeded in bounding the irradiance dis-
tribution of all points on the area light source. The curves correspond to
different positions (denoted as 𝜁 ) on the light source.
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Plane (30 sec)

Reference Ours SP MPG SMS UPSMCMC

RelMSE, SPP 0.0009, 40 0.0080, 1 0.6611, 2 0.3733, 2 0.0177, 21

2

1

0

-1

-2

-3

Sphere (40 sec)

Reference Ours SP MPG SMS UPSMCMC

RelMSE, SPP 0.0053, 12 0.0403, 1 5.7010, 5 7.2111, 5 0.0374, 19

2

1

0

-1

-2

-3

Fig. 13. Equal-time comparisons on single scattering. Precomputation takes 2.1 sec and 2.4 sec, respectively. We visualize irradiance bounds (in the base
10 logarithmic space) summed over tuples. We compare with Specular Polynomials (SP) [Fan et al. 2024], Manifold Path Guiding (MPG) [Fan et al. 2023],
Specular Manifold Sampling (SMS) [Zeltner et al. 2020], and Metropolised Bidirectional Estimators (UPSMCMC) [Šik et al. 2016].

Root-finding. Rendering caustics requires finding admissible spec-
ular paths within the sampled tuple. We employ specular polyno-
mials [Fan et al. 2024] for single scattering. However, existing de-
terministic methods fail to find all solutions in multiple scattering
while maintaining a low computational cost. Therefore, we choose
Newton’s method, assessing two different schemes of initialization
and weighting to evaluate various aspects:
• Deterministic (Det) initialization [Wang et al. 2020] may
leak solutions but does not introduce additional variance, which
helps evaluate the amount of variance introduced by our pro-
posed triangle sampling.
• Stochastic initialization with an unbiased7 weighting (Stoc)
[Zeltner et al. 2020] helps validate the overall unbiasedness.
However, it could introduce outliers.

6.2 Equal-time comparisons
In Figs. 13 and 14, we compare our method to several approaches:
• Deterministic search. We compare with specular polynomi-
als [Fan et al. 2024] for one bounce and Path Cuts [Wang
et al. 2020] for multiple bounces. Note that specular polyno-
mial also uses Path Cut’s interval tests to select triangles. For
multiple scattering, we also note that the interval tests are
extremely slow. To ensure a fair comparison with roughly
equal time, we develop a variant (marked with an asterisk,
e.g., Path Cuts*) that uniformly samples 1% nodes.
• Manifold sampling methods, including the unbiased variant
of Specular Manifold Sampling (SMS) [Zeltner et al. 2020]
and Manifold Path Guiding (MPG) [Fan et al. 2023].

7We briefly note that it is possible to combine a stochastic initialization with a biased
weighting scheme [Zeltner et al. 2020], which also suffers from energy loss but in a
smoother pattern.These biased estimations remain below or equal to the ground truth,
ensuring the overall second moment is still controllable.

• Photon-based (biased)methods, including stochastic progres-
sive photon mapping (SPPM) [Hachisuka and Jensen 2009]
and metropolised bidirectional estimator (UPSMCMC) [Šik
et al. 2016].We tune the initial photon lookup radius to lower
the bias and only compare noise.
• Regular MC methods, including (bidirectional) path tracing
[Kajiya 1986; Veach and Guibas 1995], path guiding [Müller
et al. 2017], andMetropolis light transport [Jakob andMarschner
2012; Veach and Guibas 1997].

We also evaluate the temporal stability in equal-time and equal-
sample settings in the supplemental video.

Comparisons with deterministic search. Themain drawback of de-
terministic search is its high computational cost, which leads to
extremely low sample rates. Consequently, although it produces
zero-variance estimations of incident radiance, the rendering re-
sult still suffers from aliases and noise. This issue is particularly
pronounced for specular-diffuse-specular (SDS) effects, which re-
quire path tracing to sample diffuse shading points (e.g., in Fig. 13,
the caustics viewed through the reflection of the gold plane). Be-
sides, there are many fireflies on the floor, which come from the
sampling of non-specular paths (with potential connections to the
deterministic specular ones). Fortunately, our method significantly
speeds up rendering by stochastically reducing the search domain
using bounding information. As a result, we can utilize substan-
tially higher sample rates within equal time, effectively decreasing
the overall noise and aliases present in the final image.

For multiple scattering, deterministic search becomes too slow
due to combinatorial explosions. As a result, we can only uniformly
sample a portion (Path Cuts*) for roughly equal-time comparisons.
However, uniform sampling does not consider energy, thus intro-
ducing significant noise, as shown in Fig. 14. Our bound-driven
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Slab (30 sec)

Reference Ours+Det Ours+Stoc MPG SMS Path Cuts* UPSMCMC SPPM

RelMSE, SPP 0.0099, 2 0.0147, 2 0.0498, 8 0.1374, 8 0.1398, 26 0.0341, 25 0.0366, 130

Diamonds (50 sec)

Reference Ours+Det Ours+Stoc MPG SMS Path Cuts* UPSMCMC SPPM

RelMSE, SPP 0.0393, 32 0.0474, 28 5.8434, 11 9.1171, 9 0.4143, 12 0.3247, 27 0.3436, 204

Fig. 14. Equal-time comparisons on double scattering. Precomputation time is included, which takes 23 sec and 25 sec, respectively. We combine our
triangle sampling with deterministic (Det, biased) and stochastic (Stoc, unbiased) initialization for Newton’s iteration-based root-finding. Since the original
Path Cuts is extremely slow, we use a modified version (Path Cuts*) that samples 1% paths, which already takes 60× more time than the other methods.

sampling reduces the number of tuples that need to perform root-
finding. Consequently, rendering with one sample per pixel takes
just one to several seconds while maintaining a low variance.

Comparisons with manifold sampling. As state-of-the-art meth-
ods for sampling specular paths, both SMS and MPG rely on point
sampling to search for admissible chains. In particular, SMS tends
to exhibit noticeable noise, largely due to its uniform sampling of
seed chains. While MPG mitigates this issue through importance
sampling, it requires a fairly long time to learn accurate distribu-
tions.With a limited budget,MPG still produces noisy outputs.More-
over, these methods possess an unbounded probability of finding
a solution, which, depending on the initialization of distributions,
could be quite small and result in extremely high variance.
Although we also introduce stochastic sampling, we can keep

the variance controllable thanks to the bound of caustics. Conse-
quently, we guarantee that important solutions can be immediately
found with a large enough probability, thus achieving low variance.
Note the speed difference between our triangle-based approach

and manifold sampling when handling complex geometry. Specifi-
cally, even if we sample multiple solutions per shading point while
manifold sampling generates at most one, our sample rates are usu-
ally higher. The reasons for this phenomenon are two-fold:

• For manifold sampling methods, the use of reciprocal prob-
ability estimation contributes a significant amount of vari-
ance and overhead, resulting in fireflies. In contrast, our tri-
angle sampling does not require probability estimations.
• Manifold walks require tracing a full specular chain in each
iteration of Newton’s solver, which includes several inter-
section tests (i.e., querying the BVH). Since our triangle
sampling has bounded the domain to a local region, our solver

does not require ray tracing except for the visibility check af-
ter a solution is found.

Comparison with photon-based methods. Photons are often dis-
tributed non-uniformly across the receiver. Low-energy regions,
such as the bottom crop of the Slab scene, may receive an insuf-
ficient number of photons. However, accurate density estimations
require sufficient photon samples to reconstruct the true distribu-
tion reliably. As a consequence, rendering results may exhibit ei-
ther noise or blurriness, depending on the choice of the kernel ra-
dius. Our approach operates on functions within finite regions and
directly solves for admissible paths, avoiding the issues related to
point sampling and density estimations. As a result, we achieve low-
variance rendering that preserves the sharp details of caustics.

Comparison with regular MC methods. Traditional MC methods
face significant challenges when dealing with SDS paths (Fig. 15)
because of the high-frequency radiance distribution. Even with ef-
fective guiding or Metropolis sampling, they still rely on the base
sampler to find initial paths for subsequent learning and mutations.
As an intrinsic limitation, these issues also persist with more ad-
vanced guiding and Metropolis sampling.

6.3 Validations
In addition to the above rendering results, we provide a direct visu-
alization of the correctness and tightness of our bound.

Bounding correctness and tightness. In Fig. 17, we present the ra-
tio 𝐸/𝐸 between the irradiance bound and the true value, shown
in a logarithmic scale with base 10. This ratio is expected to be no
smaller than 1 as long as the bound is valid, with smaller values rep-
resenting a tighter bound. The absence of red regions in the image
indicates that our bound is consistently valid. The predominance
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Plane Area (30 sec)

Reference Ours SP PT BDPT PPG MEMLT

RelMSE, SPP 0.0051, 29 0.0120, 1 0.0518, 1030 0.0107, 620 0.0325, 328 0.0068, 325

Fig. 15. Equal-time (30 sec) comparisons on handling area light
sources.We compare ourmethodwith path tracing (PT), bidirectional path
tracing (BDPT), Practical Path Guiding (PPG), and Manifold Exploration
Metropolis light transport (MEMLT) in a Plane scene lit by an area light.
Precomputation takes 11 sec.

Livingroom (94 sec)

Reference Ours MPG

RelMSE, SPP 0.0026, 256 0.0036, 357

Fig. 16. Rendering scenes with non-planar caustics receivers. Our method
is still accurate, though relatively slow. Precomputation takes 20 sec.

of light blue areas suggests that the bound is generally tight. Note
that the bound may become loose for various reasons, including a
loose position/irradiance bound and insufficient resolution.

The number of solutions. We further validate the number of so-
lutions for each triangle tuple, as illustrated in Fig. 8. Across our
tested scenes, nearly all triangle tuples exhibit at most one solution.
This indicates that our assumption of𝑚 = 1 is reasonable.

6.4 Ablation studies
We study the impact of some important components in our pipeline.

With vs. without remainder variables. In Fig. 18, we examine the
impact of the remaining variables. The absence of these variables
significantly accelerates precomputation; however, this comes at
the cost of bounding validity, leading to (red) regions where the ir-
radiance exceeds bounds. By incorporating the remaining variables,
we ensure validity, albeit with a slower precomputation.

For our experiments, we enable the remaining variables unless
otherwise noted for the sake of strict correctness. Nonetheless, we
acknowledge that in certain scenarios, maintaining bounding va-
lidity may not be critical. In such cases where slight leaking or in-
creased variance is acceptable, one might consider omitting the re-
maining variables to enhance performance.

Position-only vs. our complete method. It is possible to compute
only the position bound and then either enumerate or uniformly
sample all tuples that cover the shading point. We evaluate these
variants in Fig. 10. As seen, enumeration yields a significantly smaller
number of samples, leading to higher overall noise. Uniform sam-
pling, which does not account for energy, introduces visible vari-
ance. Our method, by sampling a small subset based on irradiance
bound, accelerates rendering while maintaining low variance, ulti-
mately resulting in high-quality rendering within equal time.

Plane

Slab

Fig. 17. Visualization of the ratio between the bound and the true
irradiance for each solution in the Plane and Slab scenes. The image il-
lustrates the overall situation, where the ratio is averaged per pixel. The
accompanying histogram represents the ratios for each solution. These ra-
tios are displayed on a logarithmic scale with base 10. All ratios are greater
than zero, and the red dashed lines indicate the average.

Slab

Fig. 18. Without remainder variables, there exists some solutions whose
bound �̃� is slightly lower than the true irradiance 𝐸 (red). By using remain-
der variables, all solutions are properly bounded (blue). The ratio �̃�/𝐸 is
displayed on a logarithmic scale with base 10.

However, it is important to note that the effectiveness of irradiance-
based sampling is scene-dependent. In scenarios where the number
of tuples that cover a grid cell is low (e.g., the Slab scene in Fig.
14 and the Pool scene in Fig. 20), tuple sampling may contribute
minimally. In such cases, bypassing the irradiance computation can
shorten the precomputation time. Just allocating these budgets to
the rendering pass would result in higher overall quality.

Interval arithmetic vs. Bernstein polynomials. Our pipeline can
support variousmethods for computing the bounds of rational func-
tions. In Fig. 4, we compare our approach with interval arithmetic,
which has been widely adopted in previous works [Walter et al.
2009; Wang et al. 2020]. Despite its general applicability, we ob-
served that interval arithmetic exhibits slow convergence and often
generates excessively loose bounds, particularly for irradiance. In
contrast, our use of Bernstein polynomials takes advantage of the
properties of rational functions, yielding tighter bounds in both sce-
narios of equal piece count and equal time allocation.
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Table 2. Rendering statistics. We show the percentage of precomputation time used for position bound (including tuple constructions), irradiance bound,
and recording bound into grid cells. For rendering, we show the percentage of time used by sampling S from U and the average size of S, B, and U, respectively.
We only render the specified chain type for fair comparisons. Additionally, we report the number of triangle tuples, the number of pieces (that require
computing position bounds and irradiance bounds, respectively) averaged per tuple, and the size of bound storage.

Figure Type Scene #Tri. Subdiv. Precomputation Time #Tuples Avg. #Pieces Mem. Render Time Size of sets
Chain Normal (K) Max Level Pos. Irr. Rec. (K) Pos. Irr. (MB) Sampling |S| |B| |U|

Fig. 1 R Interp Dragon (1) 354 20 23.4% 58.9% 16.5% 354.26 43.44 32.12 1948.7 3.2% 11.8 13.0 1454.4
Fig. 1 R Interp Dragon (23) 354 20 21.5% 74.8% 2.6% 354.26 193.19 170.49 1297.4 2.0% 1.3 2.0 1053.7
Fig. 13 R Interp Plane 131 12 21.6% 55.2% 21.8% 131.07 10.89 7.75 220.9 3.1% 3.4 4.1 204.7
Fig. 13 T Interp Sphere 82 1 4.1% 92.6% 0.7% 81.77 1.76 1.17 37.0 1.4% 1.5 1.7 51.6
Fig. 14 TT Interp Slab 10 1 20.4% 62.4% 10.1% 126.87 1.58 0.37 28.6 1.3% 18.7 19.5 20.5
Fig. 14 TT Flat Diamonds 10 3 4.9% 76.3% 11.7% 192.57 3.63 0.77 29.8 6.5% 2.5 3.3 15.1
Fig. 16 TT Flat Livingroom 3 2 2.2% 91.8% 2.1% 48.79 3.36 0.65 4.6 0.4% 0.7 0.8 0.8
Fig. 20 T Interp Pool 20 1 6.5% 84.2% 0.9% 20.00 1.12 1.12 13.0 2.6% 3.3 3.8 7.6

6.5 Performance analysis
In Table 2, we report the statistics of our rendering experiments.

Precomputation time. In the precomputation pass, the majority
of time is spent calculating the irradiance bounds due to the high
degrees. The recording process also incurs some overhead because
we utilize a simple uniform grid, which becomes inefficient when
the position bounds cover numerous cells.

Sampling. The size of our sampled set S is often smaller than that
of U, which validates the effectiveness of sampling. As we pack tu-
ples into bins whose accumulation of probabilities never exceeds 1,
the number of bins |B| is slightly above |S|. Sampling a tuple from
a bin only requires a simple bisection, while solving for an admis-
sible path is inherently more time-consuming. As a result, the time
added by our sampling process is relatively minimal.

The number of triangle tuples and pieces. For double scattering,
outgoing rays from each T1 intersect with only 10 to 20 different T2
on average. This indicates that our bounds effectively mitigate the
combinatorial explosion associated with triangle-based methods.
The average number of pieces after subdivision remains far be-

low the quartic of the maximum subdivision level, thanks to the
stopping criteria for domain subdivisions.

Impact of mesh tessellations. We further investigate the relation-
ship between performance and tessellations in Table 3. Generally,
our method effectively keeps rendering time and error at a stable
level, albeit with a slight growth as the mesh tessellation increases.
Precomputation time and memory usage also grow sublinearly.
We highlight the double refraction case, where a naïve combina-

tion of triangle tuples would result in a quadratic increase relative
to the number of triangles. Thanks to our bound-driven tuple con-
structions, the growth in the number of tuples is linear to the num-
ber of triangles. Note that the bound-driven tuple constructions
also enable handling of non-planar caustics receivers as shown in
Fig. 16, with a sublinear (nearly square root) growth of precompu-
tation time with respect to the number of triangles of the receiver.
Additionally, the average precomputation time and storage require-
ments per tuple decrease as the position bounds become smaller
and the irradiance variation within each tuple is reduced.

Table 3. The impact of mesh tessellation (uniform) on single reflec-
tion (top) and double refractions (bottom). Top: rendering variants of
the Plane scene. We observe a sublinear growth of precomputation time,
rendering time, and memory with respect to the increase in the number of
triangles. We use the fixed maximal subdivision level at 10. Bottom: We
show statistics on rendering the double refraction of a ball (with interpo-
lated normal). Here, level refers to the maximal domain subdivision depth,
which we decrease as the mesh gets finely tessellated.

#Triangles/K Precomputation/s Rendering/s Memory/MB RelMSE

7 0.4 6.0 56.2 0.00327
28 0.4 6.0 89.7 0.00359
114 0.7 6.8 138.5 0.00391
458 1.5 8.0 205.8 0.00417

#Triangles Level #Tuples/K Pre./s Render./s Mem./MB RelMSE

80 4 15.0 4.1 3.2 22.1 0.00007
320 3 52.4 7.1 2.2 23.8 0.00006
1280 2 198.3 17.5 5.1 72.1 0.00006
5120 1 770.6 47.1 7.3 110.4 0.00006

320 0 15.0 8.8 199.9 687.1 0.00002
1280 0 52.4 10.9 91.0 641.1 0.00002
5120 0 198.3 18.2 31.6 400.9 0.00003

In the absence of domain subdivisions (Level = 0), precompu-
tation time, rendering time, and storage costs all increase signifi-
cantly compared to scenarios that utilize subdivisions. This under-
scores the necessity of introducing domain subdivisions.

Impact of hyper-parameters. We assess the impact of precompu-
tation parameters in Fig. 19. Generally, these parameters govern
the trade-off between precomputation time and rendering time re-
quired to achieve a consistent noise level. For instance, a smaller
spatial threshold 𝜎 , finer subdivision depth, and higher grid resolu-
tions facilitate faster8 rendering convergence, albeit at the expense
of increased precomputation time. For each scene, our selected pa-
rameters strike an appropriate balance in this regard. Yet, we leave
the automatic selection strategies for future work. Meanwhile, it
is important to note that these precomputation parameters have
minimal influence on rendering quality, which is predominantly
determined by the sampling parameter 𝛾 , as illustrated in Fig. 11.

8The rendering time has a limit proportional to 𝛾 times the sum of true irradiance.
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σ=0.01 σ=0.0001 σ=0.000001 Level=0 Level=1 Level=2 128×128 512×512 1024×1024

23+8, 0.0163 23+7, 0.0167 53+7, 0.0167 18+17, 0.0137 23+7, 0.0167 34+4, 0.0172 20+12, 0.0166 23+7, 0.0167 33+7, 0.0168

σ=0.01 σ=0.0001 σ=0.000001 Level=0 Level=1 Level=2 128×128 512×512 1024×1024

23+8, 0.0163 23+7, 0.0167 53+7, 0.0167 18+17, 0.0137 23+7, 0.0167 34+4, 0.0172 20+12, 0.0166 23+7, 0.0167 33+7, 0.0168

Fig. 19. The influence of precomputation parameters, including the spatial threshold 𝜎 , the maximal level of subdivisions, and grid resolutions. We
visualize the irradiance bound summed over tuples. Precomputation time 𝑝 , rendering time 𝑞, and RelMSE values 𝑟 are reported in the form 𝑝 + 𝑞, 𝑟 .

Pool (3 sec)

Reference Ours SP MPG UPSMCMC

RelMSE, SPP 0.0850, 2 0.1619, 1 0.1973, 5 0.2761, 8

Fig. 20. The advantage of our method is not significant in cases already
well handled by deterministic search. We show an example of a pool scene
with shallow water, where the number of tuples related to each shading
point is small, and irradiance does not have a significant difference. Pre-
computation time is included, which takes 1 sec.

7 LIMITATIONS
Convergence of bounds. Due to the approximations employed and

the necessity of rational functions, our current framework does not
yet include a theoretical analysis regarding the guaranteed conver-
gence rate and the tightness of the bound, so our precomputation
could be costly. Practically, in some cases, such as when triangles in-
tersect with each other, the bound is extremely loose, necessitating
substantial subdivisions. Establishing a tight and efficient bound
for these challenging scenarios deserves future research.

Generalizationwith remainder variables. Ourmethod is currently
designed for triangle meshes with a computational cost sublinear
to the number of triangles. However, theoretically, this approach is
not constrained due to the strong capability of remainder variables
in expressing uncertainty and approximation errors. Just like how
we handle area light sources, future work could explore extensions
to near-specular vertices, non-planar triangles, and triangle aggre-
gations, which could no longer depend on the number of triangles
in the scene but rather on the actual geometric complexity.

Long chains. Our method is tailored for high-quality rendering
of short specular chains (i.e., one or two bounces), where it demon-
strates themost substantial improvements over existing techniques.
As the length increases, we may encounter additional challenges.
Within a triangle tuple, the degree of rational functions becomes
higher. Although we can convert them into low-degree ones, it re-
sults in looser bounds and an increased computational burden (Fig.
21). More critically, the number of triangle tuples will grow, even
with our bound-driven tuple constructions.Therefore, we believe it
is impractical to consider all possible triangle tuples during precom-
putation. Instead, it would be more appropriate to focus on those
with high contributions from the beginning.

Ours Path Cuts MPG PT

1 spp, 37 sec 1 spp, 90 sec 1262 spp, 37 sec 31K spp, 37 sec

Fig. 21. Triple reflections between a metallic plane and a sphere. We pre-
compute only the position bounds, which requires 8 sec. Due to the loose-
ness of our bounds, the resulting speedup is not substantial.

Simplifying assumptions. Visibility and the Fresnel term are ig-
nored during precomputation. We also assume a single, small emit-
ter and purely specular scattering. Thus, the precomputation time
would scale linearly with the number of emitters. Also, we only
consider specular chains connecting to light sources. Future work
could relax these assumptions to make the method more practical.

Bound representations. We parameterize the positional bound us-
ing the texture coordinates of receivers and employ a uniform grid
for simplicity. This approach is advantageous for planar receivers;
however, it faces performance degradation as the complexity of the
receivers increases (see Fig. 16). Future work could store volumet-
ric bounds with vector irradiance [Arvo 1994], thereby eliminating
dependence on the receiver configuration. Implementing a spatial
hierarchy could further reduce computational and memory costs.

8 CONCLUSION
The challenge of unbounded convergence is crucial to robustly ren-
der complex light transport. By bounding both the position and
irradiance of caustics, we succeed in controlling the estimator’s
variance, resulting in efficient and robust rendering. With analytic
and functional modeling on both the light transport behaviors and
geometric information, we finally reach a bound of caustics using
the properties of rational functions. Unlike methods based on point
sampling and online learning, our bound is intrinsically reliable and
conservative. We finally leverage our bound to achieve a variance
reduction of over an order of magnitude in equal time.

We believe our method represents a step forward in controlling
the complex behaviors of stochastic sampling, indicating great po-
tential for efficient and reliable rendering. The established bounds
may have further applications beyond triangle sampling, such as
manifold sampling and general path guiding. Additionally, we hope
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our method will inspire future research focused on developing en-
hanced bounds for caustics and beyond.
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