

THE PREMIER CONFERENCE & EXHIBITION ON COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES

Conditional Mixture Path Guiding for Differentiable Rendering

Zhimin Fan Ruoyu Fu Pengcheng Shi Yanwen Guo Mufan Guo Jie Guo

Nanjing University, China

© 2024 SIGGRAPH. ALL RIGHTS RESERVED.

Differentiable Rendering

• Compute derivatives of pixel intensity w.r.t. scene parameters

Differentiable Rendering

- Compute derivatives of pixel intensity w.r.t. scene parameters
- Enable gradient-based optimization for **inverse** reconstruction

Differential Rendering Equation

$$\partial_{\pi} L_o(\mathbf{x}, \boldsymbol{\omega}_o) = \partial_{\pi} L_e(\mathbf{x}, \boldsymbol{\omega}_o) + \int_{\mathcal{S}^2} (f_s(\mathbf{x}, \boldsymbol{\omega}_i, \boldsymbol{\omega}_o) \partial_{\pi} L_i(\mathbf{x}, \boldsymbol{\omega}_i) + \partial_{\pi} f_s(\mathbf{x}, \boldsymbol{\omega}_i, \boldsymbol{\omega}_o) L_i(\mathbf{x}, \boldsymbol{\omega}_i)) \, \mathrm{d}\boldsymbol{\omega}_i^{\perp}$$

- Differential radiance that is emitted from light sources
- Differential radiance that scatters like ordinary radiance
- Differential radiance that is also added on the shading point with differentiable BSDF

Importance sampling

• Monte Carlo estimators using samples from p(x)

$$\langle I \rangle = \left\langle \int_{\Omega} f(x) \, \mathrm{d}x \right\rangle = \frac{1}{N} \sum_{j=1}^{N} \frac{f(X_j)}{p(X_j)}$$

- The shape of p(x) should follow the shape of f(x)
- Variance reaches zero if $p(x) \propto f(x)$ (f(x) > 0)
- We consider single-signed functions first

Important paths for material derivatives

- A path with non-zero contribution must connect
- objects with differentiable params
- light sources

In this figure:

- The yellow path has zero contribution
- The **blue** and **magenta** paths are good

Sampling techniques for forward rendering

• Sampling w.r.t. product of incident radiance and BSDF

 $p^{L}(\boldsymbol{\omega}_{i}|\boldsymbol{x},\boldsymbol{\omega}_{o}) \propto f_{s}(\boldsymbol{x},\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{o})L_{i}(\boldsymbol{x},\boldsymbol{\omega}_{i})$

Local differential sampling

• Consider the DRE

$$\partial_{\pi} L_{o}(\mathbf{x}, \boldsymbol{\omega}_{o}) = \partial_{\pi} L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o}) + \int_{S^{2}} (f_{s}(\mathbf{x}, \boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) \partial_{\pi} L_{i}(\mathbf{x}, \boldsymbol{\omega}_{i}) + \partial_{\pi} f_{s}(\mathbf{x}, \boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) L_{i}(\mathbf{x}, \boldsymbol{\omega}_{i})) \, \mathrm{d}\boldsymbol{\omega}_{i}^{\perp}$$

• Sample proportional to the integrand

$$p^{D}(\boldsymbol{\omega}_{i}|\boldsymbol{x},\boldsymbol{\omega}_{o}) \propto f_{s}(\boldsymbol{x},\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{o})\partial_{\pi}L_{i}(\boldsymbol{x},\boldsymbol{\omega}_{i}) + \partial_{\pi}f_{s}(\boldsymbol{x},\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{o})L_{i}(\boldsymbol{x},\boldsymbol{\omega}_{i})$$

• Good for direct illumination, but ...

Challenge: paths are shared

- $\partial_{\pi}L_i$ requires a recursive estimation of the L_i in the term $\partial_{\pi}f_s(x,\omega_i,\omega_o)L_i(x,\omega_i)$)
- Modern practices share the same set of path samples for $\partial_{\pi}L_i$ and L_i
- p^D does not always achieve the goal of importance sampling

• Using only p^L or p^D to sample paths could lead to high variance

Mixture sampling

• A straightforward solution is to use a **mixture** of p^L and p^D

$$p^{M}(\boldsymbol{\omega}_{i}|\boldsymbol{x},\boldsymbol{\omega}_{o}) \propto w^{L} f_{s}(\boldsymbol{x},\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{o}) L_{i}(\boldsymbol{x},\boldsymbol{\omega}_{i}) + w^{D} (f_{s}(\boldsymbol{x},\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{o})\partial_{\pi}L_{i}(\boldsymbol{x},\boldsymbol{\omega}_{i}) + \partial_{\pi}f_{s}(\boldsymbol{x},\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{o})L_{i}(\boldsymbol{x},\boldsymbol{\omega}_{i}))$$

• How to determine w^L and w^D ?

Optimal mixture

- Given a path prefix x_1, x_2, \dots, x_i
- When sampling the direction from x_i to x_{i+1}
- The contribution of the entire path writes

$$\partial_{\pi} \left(L_o \prod_{j=1}^{i-1} f_j \right) = L_o \partial_{\pi} \prod_{j=1}^{i-1} f_j + (\partial_{\pi} L_o) \prod_{j=1}^{i-1} f_j$$

• Thus the optimal weight

$$w_i^L(\overleftarrow{\mathbf{x}_i}) = \partial_\pi \prod_{j=1}^{i-1} f_j, \quad w_i^D(\overleftarrow{\mathbf{x}_i}) = \prod_{j=1}^{i-1} f_j$$

Reduction of dimensionality

$$p(\boldsymbol{\omega}_{i}|\boldsymbol{x}_{i}) \propto w^{L}(\boldsymbol{x}_{i})f_{s}(\boldsymbol{x},\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{o})L_{i}(\boldsymbol{x},\boldsymbol{\omega}_{i}) + w^{D}(\boldsymbol{x}_{i})(f_{s}(\boldsymbol{x},\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{o})\partial_{\pi}L_{i}(\boldsymbol{x},\boldsymbol{\omega}_{i}) + \partial_{\pi}f_{s}(\boldsymbol{x},\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{o})L_{i}(\boldsymbol{x},\boldsymbol{\omega}_{i}))$$

$$w_i^L(\overleftarrow{\mathbf{x}_i}) = \partial_\pi \prod_{j=1}^{i-1} f_j, \quad w_i^D(\overleftarrow{\mathbf{x}_i}) = \prod_{j=1}^{i-1} f_j$$

• p is conditioned on the path prefix, which could be high-dimensional

• We instead fit p^{D} and p^{L} separately and mix them on the fly

Summary: conditional mixture sampling

A Unidirectional Method for Importance Sampling Path Derivatives

 \hat{p} refers to an unnormalized distribution

Application with path guiding

Path guiding

- Fit distributions from historical samples
- Target at L_i or $f_s L_i$

Conditional mixture path guiding

- Fit distributions for $p^L \propto f_s L_i$ and $p^D \propto \partial_{\pi}(f_s L_i)$
- Samples are from the previous optimization steps
- Estimate the mean μ^L and μ^D for two target distributions, respectively
- Compute the mixture on-the-fly

 $p \propto w^L \mu^L p^L + w^D \mu^D p^D$

More details

Please refer to the paper for

- Positivization for sign-variance elimination
- Extension to multiple parameters (L1 norm of gradients)
- Distribution model using kd-trees and quadtrees
- Distribution sharing across optimization steps

Results: validation

Results: gradient estimation (equal-time)

Results: inverse rendering

Conclusion

Importance sampling for material derivatives under global illumination

- Using p^D or p^L only has clear failure cases
- A mixture of them is more robust
- Close-form mixture weights conditioned on path prefixes
- Application in combination with path guiding

Future works

- Better guiding structures for differentiable rendering
- Better distribution sharing across iterations
- Difference between consecutive iterations
- Failure cases like pure-specular scenes

THANK YOU